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Effects of surfaces on resistor percolation

Olaf Stenull, Hans-Karl Janssen, and Klaus Oerding*
Institut für Theoretische Physik III, Heinrich-Heine-Universita¨t, Universitätsstraße 1, 40225 Du¨sseldorf, Germany

~Received 8 December 2000; published 26 April 2001!

We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particu-
larly we are interested in the average resistance between two connected ports located on the surface. Based on
general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite
random resistor networks. We show that the surface contributes to the average resistance only in terms of
corrections to scaling. These corrections are governed by surface resistance exponents. We carry out
renormalization-group improved perturbation calculations for the special and the ordinary transition. We cal-
culate the surface resistance exponentsfS andfS

` for the special and the ordinary transition, respectively, to
one-loop order.
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I. INTRODUCTION

Percolation@1# is perhaps the simplest model for the
regular geometry that occurs in disordered media. Perc
tion is intuitively appealing and it has a large variety
applications. Moreover, percolation is the prototype of a g
metric phase transition. The continuing interest in perco
tion results in an abundance of publications year after y
In particular, the purely geometric aspects of percolat
have been studied extensively. From the current perspec
nonequilibrium properties of percolation, like transport
percolation clusters, are of growing interest. Of course th
issues are typically more challenging than the equilibri
properties.

Random resistor networks~RRN! play a major role in the
study of transport on percolation clusters. A RRN is simpl
bond percolation model in which the occupied bonds
assigned a finite, nonzero conductivity. Commonly studied
the theory of RRN is the average resistanceMR(x,x8) be-
tween two connected portsx andx8 when an external curren
is inserted atx and withdrawn atx8. It was found@2,3# that
MR(x,x8) scales at the percolation point as

MR~x,x8!;ux2x8uf/n, ~1.1!

with f being referred to as resistance exponent and when
is the correlation length exponent of the percolation univ
sality class.

The renormalization group provides a powerful a
elaborate framework to investigate RRN analytically. In p
ticular, a field theoretic approach based on the seminal w
of Stephen@4# and Harris and Lubensky@5# has prooved to
be fruitful. Using this approach the resistance exponent
been calculated@6# to second order ine562d, whered is
the spatial dimension. Moreover, the approach has been
to computef for continuum percolating networks@7#, f for
diluted networks of nonlinear resistors@8–10#, several fractal
dimensions characterizing percolation clusters@8–10#, an en-
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tire family of multifractal exponents for the moments of th
current distribution in RRN@11–13#, etc.

Though a field theory of boundary critical phenomena h
been established~for background on the field theoretic ap
proach to boundary critical behavior, see Refs.@14,15#! and
successfully applied to geometric percolation@16,17# the
field theoretic approach to RRN has not yet been extende
include surfaces. In this paper we present such an exten
based on the approach of Stephen and Harris and Luben
We consider, at least from the standpoint of field theory,
simplest geometry that comprises a surface, viz., a se
infinite geometry. The central question addressed by this
per is as follows: What is the critical behavior ofMR(x,x8)
when the portsx andx8 are located on the surface and ho
does the surface contribute to it?

The plan of presentation is the following: the paper h
two main sections, Secs. II and III. In Sec. II we provid
some background on the phenomenology of resistor perc
tion. Then we develop a field theoretic model that has
manifestation in a Landau-Ginzburg-Wilson type Ham
tonian. We show that the term in this Hamiltonian steam
from the conductance of the surface bonds is irrelevant in
sense of the renormalization group. In Sec. III we present
core of our renormalization group analysis. We calculate c
rection to scaling exponents for the average resistance
are associated with the irrelevant surface term. These
then compared to the Wegner exponent for percolation. S
tion IV contains our conclusions. Details of the calculatio
are relegated to three appendixes.

II. MODEL

A. Semi-infinite random resistor networks

Consider bond percolation on a semi-infinite lattice ind
dimensions bounded by a (d21)-dimensional plane. A lat-
tice site i is either located off the surface, i.e.,i PB5$x
5(xi ,z)uxiPZd21,zPN/$0%%, or on the surface, i.e.,i PS
5$x5(xi ,0)uxiPZd21%. Each bond between neares
neighbors on the surface is occupied by a resistor of cond
tancesS with probability pS or unoccupied with probability
12pS . The bonds between all other nearest-neighbor p

rf,
©2001 The American Physical Society28-1



th
is

ct
e

e

h

t (
ed

e,
c

k-

um
and
se-

e

n-

cur-
et

y a
n-
the

ts
otal

con-
o-
-
cted
s
is

set
e
m-

on

e

he
l
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are occupied by resistors of conductances with probabilityp
or empty with probability 12p.

Different phases can be distinguished depending on
values ofp and pS @17#. A sketch of the phase diagram
given in Fig. 1. The parametert;pc2p indicates ifp ex-
ceeds its critical valuepc• pS may be enhanced with respe
to p. The parameterc;pS,c(p5pc)2pS serves as a measur
of the enhancement. LetPperc(x) denote the percolation
probability that sitex belongs to an infinite cluster. Assum
c.0. Crossing over fromt.0 to t,0 leads to the forma-
tion of an infinite cluster. However,Pperc(xPS)<Pperc(x
PB) by virtue of the missing neighbors at the surface. T
phase transition that takes place att50 is calledordinary
transition. Now suppose thatt is subcritical and that the
system crosses over frompS,pS,c to pS.pS,c at fixedp. At
this so-calledsurfacetransition an infinite cluster forms in
the vicinity of the surface butPperc„(xi ,z)… falls off expo-
nentially for z→`. Upon increasingp at fixed pS , the sur-
face transition is followed by theextraordinarytransition at
which the exponential decay ceases to exist. The poinc
50,t50) defines a tricritical point describing the so-call
specialtransition.

Suppose a currentI is injected into a cluster at sitex and
withdrawn at sitex8. The current carrying bonds constitut
apart from Wheatstone bridge-type configurations, the ba
bone betweenx and x8. The power dissipated on the bac
bone is by definition

P5I ~Vx2Vx8!, ~2.1!

whereVx is the potential at sitex. Using Ohm’s law,

s i , j~Vj2Vi !5I i , j , ~2.2!

whereI i , j is the current flowing through the bond fromj to i,
it may be expressed entirely in terms of voltages as

P5R~x,x8!21~Vx2Vx8
!25(

^ i , j &
s i , j~Vi2Vj !

25P~$V%!.

~2.3!

FIG. 1. Schematic phase diagram for semi-infinite percolati
The horizontal axis corresponds to2t;p2pc . The vertical axis
corresponds to c, whose negative is a measure of the surfac
hancement. The lines labeledordinary, extraordinary, andsurface
indicate continuous phase transitions that have been given t
names by Lubensky and Rubin@19#. The lines meet at a tricritica
point that represents thespecialtransition.
05612
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HereR(x,x8) is the total resistance of the backbone, the s
is taken over all nearest-neighbor pairs on the cluster
$V% denotes the corresponding set of voltages. As a con
quence of the variation principle

]

]Vi
F1

2
P~$V%!2(

j
I jVj G50, ~2.4!

one obtains Kirchhoff’s law

(̂
j &

s i , j~Vi2Vj !52(̂
j &

I i , j5I i , ~2.5!

whereI i5I (d i ,x2d i ,x8) and the summations extend over th
nearest neighbors ofi.

Alternatively to Eq.~2.3! the power can by rewritten in
terms of the currents as

P5R~x,x8!I 25(
^ i , j &

r i , j I i , j
2 5P~$I %!, ~2.6!

with $I% denoting the set of currents flowing through the i
dividual bonds andr i , j5s i , j

21 . Obviously the cluster may
contain closed loops as subnetworks. Suppose there are
rents$I ( l )% circulating independently around a complete s
of independent closed loops. Then the power is not onl
function of I but also of the set of loop currents. The pote
tial drop around closed loops is zero. This gives rise to
variation principle

]

]I ( l )
P~$I ( l )%,I !50. ~2.7!

Equation~2.7! may be used to eliminate the loop curren
and thus provides us with a method to determine the t
resistance of the backbone via Eq.~2.6!.

Since the resistance of the backbone depends on the
figurations C of the randomly occupied bonds, one intr
duces an averagê•••&C over these configurations. It is im
portant to recognize that the resistance between disconne
sites is infinite. Therefore one considers only those sitex
and x8 known to be on the same cluster. Practically this
done by introducing the indicator functionx(x,x8) which,
for a given configurationC, is unity if x andx8 are connected
and zero otherwise. Then thenth moment of the resistanceR
with respect to the average^•••&C subject tox andx8 being
on the same cluster is given by

MR
(n)5^x~x,x8!R~x,x8!n&C /^x~x,x8!&C . ~2.8!

B. Generating function

Our aim is to determine the average resistanceMR

5MR
(1) . Hence our task is twofold: we need to solve the

of Kirchhoff’s equations~2.5! and to perform the averag
over all configurations of the diluted lattice. It can be acco
plished by employing the replica technique@4#. The voltages
are replicatedD-fold: Vx→Vx

W5(Vx
(1) , . . . ,Vx

(D)). One intro-
duces

.
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EFFECTS OF SURFACES ON RESISTOR PERCOLATION PHYSICAL REVIEW E63 056128
clW ~x!5exp~ ilW •VW x!, ~2.9!

wherelW •VW x5(al (a)Vx
(a) andlW Þ0W . The corresponding cor

relation functions

G~x,x8;lW !5^clW ~x!c2lW ~x8!& rep ~2.10!

are defined as

G~x,x8;lW !5 lim
D→0

K Z2DE )
j

)
a51

D

dVj
a

3expS 2
1

2
P~$VW %!1

iv

2 (
i

VW i
2

1 ilW •~VW x2VW x8! D L
C

. ~2.11!

Here P($VW %)5( i , j ,as i , j (Vi
(a)2Vj

(a))2 and Z is the normal-
ization

Z5E )
i

dVi expF2
1

2
P~$V%!1

iv

2 (
i

Vi
2G . ~2.12!

Note that we have introduced an additional power te
( iv/2)( iVi

2 . This is necessary to give the integrals in Eq
~2.11! and ~2.12! a well-defined meaning. Without this term
the integrands depend only on voltage differences and
integrals are divergent. Physically the new term correspo
to grounding each lattice site by a capacitor of unit capac
The original situation may be restored by taking the limit
vanishing frequency,v→0.

The integrations in Eq.~2.11! can be carried out by em
ploying the saddle point method. Since the integrations
Gaussian the saddle point method is exact in this case.
saddle point equation is identical to the variation princip
stated in Eq.~2.4!. Thus the maximum of the integrand
determined by the solution of Kirchhoff’s equations~2.5!
and

G~x,x8;lW !5K expS 2
lW 2

2
R~x,x8! D L

C

, ~2.13!

up to an unimportant multiplicative constant that goes to o
in the limit D→0. Taylor expansion of the right-hand side
Eq. ~2.13! aboutl (a)50 leads to

G~x,x8;lW !5^x~x,x8!&CH 12
lW 2

2
MR

(1)~x,x8!1•••

1
1

k!
S 2

lW 2

2
D k

MR
(k)~x,x8!1•••J . ~2.14!

Hence the correlation functionG can be exploited as a gen
erating function for the momentsMR

(n) given by
05612
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^x~x,x8!&CMR
(n)~x,x8!5

]n

]~2lW 2/2!n
G~x,x8;lW !ulW 50W .

~2.15!

C. Field theoretic Hamiltonian

Since infinite voltage drops between different cluste
may occur, it is not guaranteed thatZ stays finite, i.e., the
limit lim

D→0
ZD is not well defined. Moreover,lW 50W has to

be excluded properly. Both problems can be handled by
sorting to a lattice regularization of the integrals in Eq
~2.11! and ~2.12!. One switches to voltage variablesuW

5DukW taking discrete values on aD-dimensional torus, i.e.
kW is chosen to be anD-dimensional integer with2M,k(a)

<M and k(a)5k(a)mod(2M ). Du5uM /M is the gap be-
tween successive voltages anduM is the voltage cutoff. In
this discrete picture there are (2M )D21 independent state
variables per lattice site and one can introduce the Potts s
@18#

FuW~x!5~2M !2D (
lW Þ0W

exp~ ilW •uW !clW ~x!5duW ,uW x
2~2M !2D

~2.16!

subject to the condition(uWFuW(x)50.
Now we revisit Eq.~2.11!. Carrying out the average ove

the diluted lattice configurations provides us with the weig
exp(2Hrep) of the averagê . . . & rep:

H rep52 lnK expS 2
1

2
P1

iv

2 (
i

uW i
2D L

C

52(
i , j

ln^exp~2 1
2 s i , j~uW i2uW j !

2!&C1
iv

2 (
i

uW i
2 .

~2.17!

By dropping a constant termNB ln(12p)1NS ln(12pS) with
NS being the number of bonds between sites on the sur
of the undiluted lattice andNB being the corresponding
quantity related to remaining bonds we obtain

H rep52 (
i PB, j PBøS

KB~uW i2uW j !

2 (
i PS, j PS

KS~uW i2uW j !1(
i

h~uW i !

52 (
i PB, j PBøS (

uW ,uW 8
KB~uW 2uW 8!FuW~ i !FuW 8~ j !

2 (
i PS, j PS (

uW ,uW 8
KS~uW 2uW 8!FuW~ i !FuW 8~ j !

1(
i

(
uW

h~uW !FuW~ i !, ~2.18!

where
8-3



r

ca

f
si
n-

ica

-

.

c-

r

the
lica
rac-

in

rg-

e

in
-
erm
n
s.

nal

ied

rs
i-

OLAF STENULL, HANS-KARL JANSSEN, AND KLAUS OERDING PHYSICAL REVIEW E63 056128
KB~uW !5 lnH 11
p

12p
exp~2 1

2 suW •uW !J ~2.19!

and

KS~uW !5 lnH 11
pS

12pS
exp~2 1

2 sSuW •uW !J . ~2.20!

The summations in Eq.~2.18! run over nearest-neighbo
pairs subject to the specified conditions. Note thatKB(uW ) and
KS(uW ) are exponentially decreasing functions in repli
space with a decay rate proportional tos21 and sS

21 , re-
spectively. The HamiltonianH rep describes interaction o
Potts spins in a semi-infinite system with an external one-
potentialh(uW ). The interaction is rotationally and translatio
ally invariant in replica space. For larges andsS the inter-
action is short ranged not only in real but also in repl
space. Moreover, the interaction potentialKB(uW ) is an ana-
lytical function of uW 2. Thus the Fourier transform

K̃B~lW !52
1

~2M !D (
uW

exp~2 ilW •uW !

3 lnS 11
p

12p
exp@2 1

2 suW •uW # D ~2.21!

can be Taylor expanded as

K̃B~lW !5t1 (
p51

`

wp~lW 2!p, ~2.22!

with t and wp;s2p being expansion coefficients. Analo
gously one obtains for the Fourier transform ofKS :

K̃S~lW !5c1 (
p51

`

wS,p~lW 2!p, ~2.23!

with coefficientsc andwS,p;sS
2p .

In the limit of perfect transport,s→` and sS→`,
KB(uW ) andKS(uW ) go to their local limitsKB(uW )5KBduW ,0W and
KS(uW )5KSduW ,0W , with KB and KS being positive constants
The interaction part of the Hamiltonian reduces to

H rep
int 52KB (

i PB, j PBøS (
uW

FuW~ i !FuW~ j !

2KS (
i PB, j PB (

uW
FuW~ i !FuW~ j !. ~2.24!

This represents nothing more than the semi-infinite (2M )D

states Potts model that is invariant against all (2M )D! per-
mutations of the Potts spinsFuW . If s21Þ0 andsS

21Þ0, this
S(2M )D symmetry is lost in favor of the short-range intera
tions.

We proceed with the usual coarse graining step and
place the Potts spinsFuW(x) by order parameter fieldsw(x,uW )
that inherit the constraint(uWw(x,uW )50. We model the cor-
05612
te

e-

responding field theoretic HamiltonianH in the spirit of Lan-
dau as a mesoscopic free energy from local monomials of
order parameter field and its gradients in real and rep
space. The gradient expansion is justified since the inte
tion is short ranged in both spaces. Purely local terms
replica space have to respect the fullS(2M )D Potts symmetry.
After these remarks we write down the Landau-Ginzbu
Wilson-type Hamiltonian

H5HB1HS , ~2.25a!

with the bulk contribution

HB5E
V
ddx(

uW
H 1

2
w~x,uW !KB~D,DuW !w~x,uW !1

g

6
w~x,uW !3J ,

~2.25b!

and the surface part

HS5E
]V

dd21xi(
uW

H 1

2
wS~xi ,uW !KS~DuW !wS~xi ,uW !J ,

~2.25c!

where

KB~D,DuW !5t2D2wDuW ~2.25d!

and

KS~DuW !5c2wSDuW . ~2.25e!

The integration in Eq.~2.25b! extends over the half-spac
V5$x5(xi ,z)uxiPRd21,z>0% whereas the integration in
Eq. ~2.25c! extends over the corresponding boundary]V.
Terms of higher order in the fields have been neglected
Eq. ~2.25b! and Eq.~2.25c! since they turn out to be irrel
evant in the renormalization group sense. Moreover, a t
of the form wS]nw5 lim

z→01wS]zw has been neglected i
Eq. ~2.25c! though it is marginal on dimensional ground
Such a term turns out to be redundant, cf. Ref.@14#. t, c, w,
and wS are now coarse-grained analogues of the origi
coefficients. Note that, upon settingw5wS50, H reduces to
the usual semi-infinite Potts model Hamiltonian as stud
by Diehl and Lam@17#.

D. Irrelevance of wS

Here we discuss the relevance ofwS in the renormaliza-
tion group sense. LetP denote the set of paramete
$t,w,c,wS% and b some scaling factor for the voltage var
able: uW→buW . By substitution of w(x,uW )5w8(x,buW ) and
wS(x,uW )5wS8(xi ,buW ) into the Hamiltonian we get

H@w8~x,buW !,wS8~xi ,buW !,P#

5E
V
ddx(

uW
H 1

2
w8~x,buW !KB~D,DuW !w8~x,buW !

1
g

6
w8~x,buW !3J
8-4



in

n

e,

n
-

h

e

ty
rdi-

n
des
a-

ur
is-

ion

les
d

e

EFFECTS OF SURFACES ON RESISTOR PERCOLATION PHYSICAL REVIEW E63 056128
1E
]V

dd21xi(
uW

H 1

2
wS8~xi ,buW !KS~DuW !

3wS8~xi ,buW !J . ~2.26!

Renaming the scaled voltage variables,uW 85buW , leads to

H@w8~x,uW 8!,wS8~xi ,uW 8!,P#

5E
V
ddx(

uW 8
H 1

2
w8~x,uW 8!KB~D,b2DuW 8!w8~x,uW 8!

1
g

6
w8~x,uW 8!3J

1E
]V

dd21xi(
uW 8

H 1

2
wS8~xi ,uW 8!KS~b2DuW 8!

3wS8~xi ,uW 8!J . ~2.27!

Clearly a scaling of the voltage variable results in a scal
of the voltage cutoff:uM→buM . However, by taking the
limit D→0 beforeuM→` the dependence of the theory o
the cutoff drops out. We can identifyuW 8 anduW and thus

H@w~x,buW !,wS~xi ,buW !,P#5H@w~x,uW !,wS~xi ,uW !,P8#,
~2.28!

whereP85$t,b2w,c,b2wS%. Equation~2.28! implies for the
connected correlation functions

GN,M~$x,xi ,uW %;t,w,c,wS!

5 lim
D→0

K )
i 51

N

w~xi ,uW i !)
j 51

M

wS~xi j ,uW j !L
H

conn

~2.29!

that

GN,M~$x,xi ,uW %;t,w,c,wS!

5GN,M~$x,xi ,buW %;t,b2w,c,b2wS!. ~2.30!

Note thatx in GN,M refers to a point located off the surfac
i.e., x5(xi ,z) with z.0. In other quantities, however,x
may refer to an arbitrary point. The two-point correlatio
functionsGN,M with N1M52 are nothing more than rep
lica space Fourier transforms of^clW (x)c2lW (x)&H . We de-
duce from Eq.~2.14! that

lW 2MR„~x,x8!;t,w,c,wS…

5~b21lW !2MR„~x,x8!;t,b2w,c,b2wS….

~2.31!

The freedom to chooseb has not been exploited yet. Wit
the choiceb25w21 the previous scaling relation turns into
05612
g

MR„~x,x8!;t,w,c,wS…5w fS ~x,x8!;t,c,
wS
w D , ~2.32!

where f is a scaling function. Dimensional analysis of th
Hamiltonian shows thatwlW 2;m2 and wSlW 2;m1, wherem
is the usual inverse length scale. ThuswS /w;m21, i.e., wS
is an irrelevant coupling.

III. RENORMALIZATION-GROUP ANALYSIS

The three types of transition occurring at bulk criticali
t50, namely, the ordinary, the special, and the extrao
nary transition, are described by renormalization-group~RG!
fixed points wherec takes the valuecord* 5`, csp* 50, and
cex* 52`, respectively~cf. Sec. III C 3 of Ref.@14# and ref-
erences therein!. In the remainder of this paper we focus o
the special and the ordinary transition. This section provi
an outline of our renormalization-group improved perturb
tion calculation.

A. Gaussian propagator

Now we determine the Gaussian propagator for o
model. For this purpose the irrelevant term has to be d
carded from the Hamiltonian. Then the saddle point solut
of

E Dw exp~2H!, ~3.1!

whereDw indicates an integration over the set of variab

$w(x,uW )% for all x and uW , is determined by the so-calle
equations of motion

tw2Dw2wDuWw1
g

3
w250 ~3.2a!

and

wS1]nwS50. ~3.2b!

In Eq. ~3.2b! ]nwS(xi ,uW ) denotes the normal derivativ
lim

z→01]zw(x,uW ). As a consequence of Eq.~3.2!, the Fourier
transform Gp,lW (z,z8) of the Gaussian propagatorG(xi

2xi8,z,z8,uW 2uW 8) has to satisfy

@t1p21wlW 22]z
2#Gp,lW ~z,z8!5d~z2z8! ~3.3a!

with the boundary conditions

cGp,lW ~z,0!5]z8Gp,lW ~z,z8!uz850 ~3.3b!

and

Gp,0W~z,z8!50. ~3.3c!

Equations~3.3! can by solved as described in Ref.@14#, and
one obtains
8-5
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Gp,lW ~z,z8!5
1

2klW
Fexp~2klW uz2z8u!

1
klW 2c

klW 1c
exp$2klW ~z1z8!%G ~12dlW ,0W !,

~3.4!

where

klW 5~t1p21wlW 2!1/2. ~3.5!

As in our previous work on RRN@6,9,10,12,13#, this princi-
pal propagator may be viewed as being composed of a
ducting and an insulating part:

Gp,lW ~z,z8!5Gp,lW
cond

~z,z8!2Gp
ins~z,z8!, ~3.6!

where

Gp,lW
cond

~z,z8!5
1

2klW
Fexp~2klW uz2z8u!

1
klW 2c

klW 1c
exp$2klW ~z1z8!%G ~3.7!

and

Gp
ins~z,z8!5

1

2k0W
Fexp~2k0W uz2z8u!

1
k0W2c

k0W1c
exp$2k0W~z1z8!%GdlW ,0W . ~3.8!

B. Special transition

Here we sketch our renormalization-group improved p
turbation calculation for the special transition. The ordina
transition is relegated to the next subsection.

The constituting elements of our diagrammatic expans
are the vertex2g and the propagatorGp,lW (z,z8). The de-
composition of the principal propagator intoGp,lW

cond(z,z8) and
Gp

ins(z,z8) allows for a schematic decomposition of the pri
cipal Feynman diagrams into sums of conducting diagra
consisting of conducting and insulating propagators~see
Figs. 2 and 3!. These conducting diagrams may be inte
preted as being resistor networks themselves with conduc
propagators corresponding to conductors and insula
propagators corresponding to open bonds.

At the special transitionGp,lW
cond(z,z8) simplifies to the con-

ducting Neumann propagator

Gp,lW
cond,N

~z,z8!5
1

2klW
@exp~2klW uz2z8u!

1exp$2klW ~z1z8!%#. ~3.9!
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It is convenient to parametrize the conducting Neuma
propagator in terms of modified Bessel functions of the s
ond kind @20#:

Gp,lW
cond,N

~z,z8!5
1

~4p!1/2E0

` ds

s1/2
exp@2s~t1p21wlW 2!#

3H expF2
~z2z8!2

4s G1expF2
~z1z8!2

4s G J .

~3.10!

In this parametrization the parameterss correspond to resis
tances and the replica variablesilW i to currents. The replica
currents are conserved in each vertex and we may writelW i

5lW i(lW ,$l ( l )W
%), where lW is an external current and$lW ( l )%

denotes the set of independent loop currents.
As we have learned in Sec. II D, the surface coupli

constantwS is irrelevant. By setting it to zero, however, w
would lose all information about its impact on the avera
resistance. To investigate this impact we work with ins
tions @21#. Here at the special transition we analyze corre
tion functions

GN,M~$x,xi ,uW %;t,w,c!OS

5 lim
D→0

K OS)
i 51

N

w~xi ,uW i !)
j 51

M

wS~xi j ,uW j !L
H

conn

~3.11!

where the operator

FIG. 2. Ultraviolet divergent Feynman diagrams contributing
the renormalization ofOS at the special transition. The bold line
represent principal propagatorsGp,lW (z,z8). The light lines stand for
conducting propagatorsGp,lW

cond(z,z8), and the dashed lines represe
insulating propagatorsGp

ins(z,z8). Insertions of the surface operato
OS are symbolized by the hatched ‘‘surface.’’

FIG. 3. Ultraviolet divergent Feynman diagrams contributing
the renormalization ofOS

` at the ordinary transition. The meanin
of the symbols is the same as in Fig. 2, except that the hatc
‘‘surface’’ stands now, in conjunction with the bars, for an inserti
of the operatorO S

` .
8-6
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OS5
w

2E dd21xi(
uW

$¹uWwS~xi ,uW !%2 ~3.12!

is inserted. Note by comparing Eqs.~2.25! and~3.12! thatOS
is associated with a coupling constantvS5wS /w.

To see how the insertion procedure works in detail
now consider diagram~a! ~see Fig. 2!. Diagram~a! stands for

2g2w(
lW ( l )

E
p
lW ( l )2Gp,lW ( l )

cond,N
~z8,0!Gp,lW ( l )

cond,N
~0,z9!

3Gp,lW 1lW ( l )
cond,N

~z8,z9!, ~3.13!

where*p is an abbreviation for (2p)2(d21)*dd21p. The in-
volved summation over the loop current reads

2w(
lW ( l )

lW ( l )2exp@wP~lW ,lW ( l )!#. ~3.14!

We interpret P(lW ,lW ( l ))52(s21s3)lW ( l )22s1(lW 1lW ( l ))2 as
the power of the diagram. To evaluate the summation
employ the saddle point method. Note that the saddle p
equation is nothing more than the variation principle sta
in Eq. ~2.7!. Thus, solving the saddle point equations
equivalent to determining the total resistanceR($si%) of a
diagram, and the saddle point evaluation of Eq.~3.14! yields

Eq. (3.14)52wexp@2R~s1 ,s2 ,s3!wlW 2#

3E
2`

`

ddl ( l )FlW ( l )2
s1

s11s21s3
lW G2

3exp@2~s11s21s3!wlW ( l )2#. ~3.15!

Here we have switched back to continuous currents.
remaining integration is Gaussian and therefore straight
ward. In the limitD→0 we obtain upon Taylor expansion o
exp@2R(s1,s2,s3)wlW2#,

Eq. (3.15)52wlW 2S s1

s11s21s3
D 2

1O„~lW 2!2
….

~3.16!

Note that is1lW /(s11s21s3) is the replica current flowing
through the surface contact. Thus, we have an effec
method to carry out the summations over the loop curre
essentially we just need to determine the current flow
through the surface contact of the diagram.

The ultraviolet divergent integrals occurring in the di
grammatic expansion can be regularized by the minimal s
traction method. We employ the following renormalizatio
scheme:

w→w° 5Z1/2w, t→t°5Z21Ztt, ~3.17a!

w→w° 5Z21Zww, g→g°5Z23/2Zu
1/2Ge

21/2u1/2me/2

~3.17b!
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wS→w° S5Z1
1/2Z1/2wS , c→c°5Z1

21Z21Zcc,
~3.17c!

OS→O7 S5ZOSOS , ~3.17d!

whereGe5(4p)2d/2G(11e/2) with G denoting the Gamma
function. The overcircles indicate unrenormalized quantiti
Z, Zt , andZu have been calculated to three-loop order by
Alcantara Bonfimet al. @22# Diehl and Lam@17# computed
Z1 andZc to one-loop order. Moreover, we gave a two-loo
result forZw in @6#. Hence, it remains to determineZOS. Our
calculation that is sketched in Appendix A yields

ZOS511
u

6e
1O~u2!. ~3.18!

The unrenormalized theory has to be independent of
length scalem21 introduced by the renormalization. In pa

ticular the unrenormalized correlation functions with theO7 S
insertion have to be independent ofm, i.e.,

m
]

]m
G° N,M~$x,xi ,w° lW 2%;u° ,t° ,c° ,m!OS50. ~3.19!

Expressed in terms of renormalized quantities, Eq.~3.19!
leads to the Gell-Mann-Low renormalization-group equat

FDm1
N1M

2
g1

M

2
g11gOSGGN,M~$x,xi ,wlW 2%;u,t,c,m!OS

50, ~3.20a!

where we use the abbreviation

Dm5m
]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
1ckc

]

]c
.

~3.20b!

In Eq. ~3.20! we have introduced the usual Wilson functio

g•••~u!5m
]

]m U
0

ln Z••• , ~3.21a!

z~u!5m
]

]m U
0

ln w5g2gw , ~3.21b!

k~u!5m
]

]m U
0

ln t5g2gt , ~3.21c!

kS~u!5m
]

]m U
0

ln c5g1g12gc , ~3.21d!

b~u!5m
]u

]m U
0

5u~2e13g2gu!, ~3.21e!

where the bare quantities are kept fixed while taking
derivatives.
8-7
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The renormalization group equation can be solved i
standard manner by the method of characteristics. The c
acteristics read

l
]m̄

] l
5m̄ with m̄~1!5m, ~3.22a!

l
]ū

] l
5b@ ū~ l !# with ū~1!5u, ~3.22b!

l
]

] l
ln t̄5k@ ū~ l !# with t̄~1!5t, ~3.22c!

l
]

] l
ln w̄5z@ ū~ l !# with w̄~1!5w, ~3.22d!

l
]

] l
ln c̄5kS@ ū~ l !# with c̄~1!5c, ~3.22e!

l
]

] l
ln Z̄•••5g•••~ ū~ l !! with Z̄•••~1!51. ~3.22f!

At the infrared-stable fixed pointu* , determined byb(u* )
50, we find

GN,M~$x,xi ,wlW 2%;u,t,c,m!OS

5 l (N1M )h/21Mh1/21gOS
*

3GN,M~$ lx,lxi ,l z* wlW 2%;u* ,l k* t,l kS* c,m!OS,

~3.23!

where g* 5g(u* ), g1* 5g1(u* ), k* 5k(u* ), kS*
5kS(u* ), andgOS

* 5gOS(u* ). In order to obtain the scaling

behavior of the correlation functions, a dimensional analy
remains to be done. This dimensional analysis gives

GN,M~$x,xi ,wlW 2%;u,t,c,m!OS

5m (N1M )(d22)/211

3GN,M~$mx,mxi ,m22wlW 2%;u* ,m22t,m21c,m!OS.

~3.24!

Equation~3.23! in conjunction with Eq.~3.24! now results in

GN,M~$x,xi ,wlW 2%;u,t,c,m!OS

5 l (N1M )(d221h)/21Mh1/2111gOS
*

3GN,M~$ lx,lxi ,l 2f/nwlW 2%;u* ,l 21/nt,l 21/nSc,m!OS,

~3.25!

whereh5g* , 1/n522k* , h15g1* , and 1/nS512kS* are
usual critical exponents for semi-infinite percolation, who
05612
a
ar-

is

e

e expansion results may be inferred, e.g., from@22,17#. f
5n(22z* )511e/4214e2/30871O(e3) is the bulk resis-
tance exponent@6#.

The scaling behavior of the correlation functions witho
insertion can be derived by similar means. The correspo
ing renormalization group equation is analogous to E
~3.20!. Basically, just thegOS is missing. Solving this renor-
malization group equation gives in conjunction with dime
sional analysis

GN,M~$x,xi ,wlW 2%;u,t,c,m!

5 l (N1M )(d221h)/21Mh1/2

3GN,M~$ lx,lxi ,l 2f/nwlW 2%;u* ,l 21/nt,l 21/nSc,m!.

~3.26!

By comparing Eqs.~3.25! and ~3.26! we learn that the scal
ing dimensionxOS of OS is

xOS511gOS
* , ~3.27!

which tells us that the couplingvS scales in terms of the flow
parameterl as

vS~ l !5vSl 11gOS
* . ~3.28!

Taking into account that

w~ l !5wlz* 22 ~3.29!

we deduce that

wS~ l !5wSl 2fS /n. ~3.30!

Here we introduced the surface resistance exponentfS for
the special transition. To one-loop order it is given by

fS5n~12z* 2gOS
* !5

1

2
2

1

84
e1O~e2!. ~3.31!

Now we can extract the scaling behavior of the avera
resistance between surface ports from the correlation fu
tions withN50 andM52. At the special transition, i.e., fo
t5c50, Eqs.~3.25! and ~3.26! reduce to

G0,2~ uxi2xi8u,wlW 2!OS5 l (d221h i)2(fS2f)/n

3G0,2~ l uxi2xi8u,l
2f/nwlW 2!OS

~3.32!

and, respectively,

G0,2~ uxi2xi8u,wlW 2!5 l (d221h i)G0,2~ l uxi2xi8u,l
2f/nwlW 2!,

~3.33!

whereh i5h1h1. Note that we have dropped some of th
arguments for notational simplicity. Clearly, the two-poi
8-8
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function with and the one without the insertion enter into t
average resistance. Overall, we may write for the genera
function

G~ uxi2xi8u,wlW 2!5 l (d221h i)$G0,2~ l uxi2xi8u,l
2f/nwlW 2!

1 l 2(fS2f)/n

3G0,2~ l uxi2xi8u,l
2f/nwlW 2!OS%.

~3.34!

We exploit the freedom to choosel 5uxi2xi8u
21. Moreover,

we carry out a Taylor expansion that yields

G~ uxi2xi8u,wlW 2!5uxi2xi8u
(d221h i)H 11uxi2xi8u

f/nwlW 2

1
wS
w

uxi2xi8u
(fS2f)/nuxi2xi8u

f/nwlW 2

1•••J . ~3.35!

Here we have set all nonuniversal constants equal to
Upon differentiating Eq.~3.35! with respect tolW 2 we obtain
at lW 250 for the average resistance

MR~xi ,xi8!5wuxi2xi8u
f/nH 11

wS
w

uxi2xi8u
(fS2f)/n1•••J .

~3.36!

Note that (fS2f)/n,0, i.e., the corresponding term is in
deed only a correction to scaling that vanishes foruxi2xi8u
→`.

C. Ordinary transition

At the ordinary transition the order parameter field sa
fies the Dirichlet boundary conditionwS50. This can be
deduced from Eq.~3.4!, which shows that the Gaussia
propagator vanishes forc→` if one of the points is located
on the surface. Since correlation functions with insertions
the surface field are zero, they are not appropriate to g
information about fluctuation effects near the surface. A c
venient method to investigate the scaling behavior of qu
tities that vanish forc→` is the 1/c expansion@23,24#. For
largec the propagator behaves as

Gp,lW ~z,0!5c21]z8Gp,lW
D

~z,z8!uz8501O~c22!, ~3.37!

whereGp,lW
D (z,z8)5 lim

c→`
Gp,lW (z,z8) is the Dirichlet propa-

gator. Similarly, one can expand the entire correlation fu
tions. This gives

GN,M~$x,xi ,uW %!5c21dN,0dM ,2d~xi2xi8!

1c2MGN,M
` ~$x,xi ,uW %!1•••

~3.38!
05612
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where

GN,M
` ~$x,xi ,uW %!

5 lim
D→0

K )
i 51

N

w~xi ,uW i !)
j 51

M

]nwS~xi j ,uW j !L
H,`

conn

.

~3.39!

The subscript̀ on the right-hand side reminds us that t
average is to be taken withc5`. Apart from the additional
term for N50, M52 the 1/c expansion amounts in replac
ing all surface fieldswS by ]nwS . The surface operator]nwS
may be renormalized by the reparametrization

]nwS→@]nwS#bare5~Z1
`Z!1/2]nwS . ~3.40!

A one-loop result forZ1
` can be gleaned from@17#.

We point out that Eq.~3.38! is correct in the given form
for the bare, i.e., unrenormalized correlation functions. In
renormalized theory nontrivial powers of 1/c will appear in-
stead of 1/c. One may infer from Eq.~2.15!, however, that
this peculiarity will not influence the average resistance.

Here at the ordinary transition we insert the operator

O S
`5

w

2E dd21xi(
uW

@¹uW]nwS~xi ,uW !#2 ~3.41!

into the one-loop diagrams contributing toG2,0
` . The corre-

sponding diagrams are depicted in Fig. 3. We use the re
malization

O S
`→O7 S

`5ZO S
`O S

` . ~3.42!

Our one-loop calculation gives for the renormalization fac

ZO S
`511

23

30

u

e
1O~u2!. ~3.43!

Details of the calculation can be found in Appendix B.
The renormalization group equation for the correlati

functionsGN,M
` with the O S

` insertion is given by

FD m
`1

N1M

2
g1

M

2
g1

`1gO S
`GGN,M

` ~$x,xi ,wlW 2%;u,t,m!O S
`

50, ~3.44a!

whereD m
` is an abbreviation for

D m
`5m

]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
. ~3.44b!

The Wilson functionsg1
` andgO S

` are defined as

g1
`~u!5m

]

]m U
0

ln Z1
` ,
8-9
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gO S
`~u!5m

]

]m U
0

ln ZO S
`. ~3.45!

Solving Eq.~3.44! provides us in conjunction with a dimen
sional analysis with the scaling behavior

GN,M
` ~$x,xi ,wlW 2%;u,t,m!OS

5 l (N1M )(d221h)/21Mh1
`/2131gO S

`*

3GN,M
` ~$ lx,lxi ,l 2f/nwlW 2%;u* ,l 21/nt,m!O S

`,

~3.46!

whereh1
`5g1

`(u* ) andgO S
`* 5gO S

`(u* ). For the correlation

functionsGN,M
` without insertion we obtain

GN,M
` ~$x,xi ,wlW 2%;u,t,m!5 l (N1M )(d221h)/21Mh1

`/2

3GN,M
` ~$ lx,lxi ,l 2f/nwlW 2%;u* ,l 21/nt,m!.

~3.47!

By comparing Eqs.~3.46! and ~3.47! we deduce that the
coupling constantvS

`5wS /(c2w) of O S
` scales as

vS
`~ l !5vS

`l 31gO S
`*
. ~3.48!

Hence we obtain forwS
`5wS /c2 that

wS
`~ l !5wS

`l 2fS
`/n, ~3.49!

with the surface resistance exponentfS
` for the ordinary

transition reading

fS
`5n~212z* 2gO S

`* !52
1

2
2

19

420
e1O~e2!.

~3.50!

Now we can proceed in the same fashion as in Sec. II
We assemble the generating function for the average re
tance from the two-point correlation functions (N50,M
52) with and without insertion. Upon taking the derivativ
with respect tolW 2 we finally arrive at

MR~xi ,xi8!5wuxi2xi8u
f/nH 11

wS
`

w
uxi2xi8u

(fS
`

2f)/n1•••J .

~3.51!

D. Leading correction

Now, as we have computed the corrections to scaling
the resistors located on the surface it is legitimate to a
How important are these corrections compared to other
rections? In particular we should compare them to the le
ing correction that is governed by the so-called Wegner
ponent. This leading correction emerges when
renormalized couplingu is not exactly equalu* since the
renormalization flow has not arrived at its fixed point y
05612
.
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e
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e

.

Such a case occurs typically when there is a finite mom
tum cutoff reminiscent of a nonvanishing lattice spacing.

In order to determine the leading correction we revisit t
characteristic Eq.~3.22b!. Upon expansion for small devia
tions u2u* from u* we obtain

l
]ū

] l
5v@ ū2u* #1O~@u2u* #2!with ū~1!5u,

~3.52!

where v5b8(u* ). This differential equation is readily
solved with the result

ū~ l !5u* 1@u2u* # l v. ~3.53!

v is referred to as the Wegner exponent. It can be calcula
without much effort to third order ine upon using the three
loop result forb(u) obtained by de Alcantara Bonfimet al.
@22#. Here we are working only to first order ine to which
the Wegner exponent is given by

v5e1O~e2!. ~3.54!

To see the impact of the deviation fromu* on the corre-
lation functions, we revisit the special transition. The ana
sis can be adapted, however, in an obvious fashion to
ordinary transition. From the renormalization group equat
and Eq.~3.53! we deduce that

G0,2~ uxi2xi8u,wlW 2!

5 l (d221h i)G0,2~ l uxi2xi8u,l
2f/nwlW 2!

3$11@u2u* # l vF~ l uxi2xi8u,l
2f/nwlW 2!

1O~@u2u* #2!%, ~3.55!

whereF is a scaling function. Once more we choosel 5uxi
2xi8u

21 and carry out a Taylor expansion,

G0,2~ uxi2xi8u,wlW 2!5uxi2xi8u
(d221h i)

3@11uxi2xi8u
f/nwlW 2

•••#

3$11@u2u* #uxi2xi8u
2v

3@11uxi2xi8u
f/nwlW 21•••#1•••%,

~3.56!

where we have set, as always, all nonuniversal expan
coefficients equal to one. By taking the derivative with r
spect tolW 2 we obtain atlW 250

MR~xi ,xi8!5wuxi2xi8u
f/n$11@u2u* #uxi2xi8u

2v1•••%.
~3.57!

Now we can compare the different corrections toMR con-
sidered in this paper. To first order ine the correction due to
the deviation fromu* falls off algebraically for increasing
port separation with an exponent2v52e. The surface cor-
rection at the special transition vanishes much faster with
8-10
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exponent (fS2f)/n5211e/21. Among the three correc
tions, the surface correction at the ordinary transition dr
off fastest with (fS

`2f)/n523123e/105.

IV. CONCLUSIONS

In order to study the effects of surfaces on resistor per
lation we have considered a semi-infinite RRN. We ha
presented a field theoretic Hamiltonian in which the coupl
constant corresponding to the surface conductances tu
out to be irrelevant. We have calculated the corrections
scaling due to this irrelevant coupling for the special and
ordinary transition to one-loop order.

In this paper we did not consider the surface and the
traordinary transition. We left the surface transition asi
because it is basically equivalent to the percolation transi
of a translationally invariantd21 dimensional RRN. Thus
the behavior ofMR at the surface transition can be inferre
from Ref. @6#. We did not drill into the extraordinary trans
tion because of severe technical complications. These
rooted in the fact that the order parameter profile is not
on neither side of the line of the extraordinary transition.

That the surface-couplingwS is irrelevant seems intu
itively plausible. Suppose that the resistor network is at
special transition where the surface and the bulk perco
simultaneously. Assume that we conduct a series of cons
tive measurements in which we apply the external curreI
between two surface portsxi andxi8 with increasing distance
uxi2xi8u. As we increaseuxi2xi8u, more and more paths o
connected bulk resistors will add in parallel to the connec
paths of surface resistors. Hence, the influence of the sur
bonds becomes negligible for largeuxi2xi8u. This situation is
even more pronounced at the ordinary transition, where
percolation probabilityPperc is lower at the surface than i
the bulk. Thus, it is plausible that the surface correction
MR vanishes faster for increasinguxi2xi8u at the ordinary
transition than at the special transition.

Both surface corrections turn out to be small compared
the leading correction governed by the Wegner exponent
percolation. This means that the surface has weak effect
the average resistance compared to those of a finite la
spacing. As long as one is interested only in the lead
behavior and major corrections to it, one may neglect
surface effects safely.

To our knowledge there are no numerical simulatio
available to date that could be used to test our predictions
the surface resistance exponents. The reason is probably
the typical simulations reported in the literature use a
called bus-bar geometry, in that the resistor network
placed between superconducting plates that short entire
faces. We hope that this paper triggers simulations provid
numerical estimates forfS andfS

` .
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APPENDIX A: EVALUATION OF DIAGRAMS
FOR THE SPECIAL TRANSITION

In this appendix we sketch the computation ofZOS for the
special transition. We start with diagram~a! and revisit Eq.
~3.13!. Upon inserting the result for the current summatio
Eq. ~3.16!, we obtain

2g2wlW 2
1

~4p!3/2Ep
E

0

`ds1ds2ds3

As1s2s3
S s1

s11s21s3
D 2

3exp@2~s11s21s3!~t1p2!#expF2
z2

4s2
2

z82

4s3
G

3H expF2
~z2z8!2

4s1
G1expF2

~z1z8!2

4s1
G J , ~A1!

where we have dropped all other terms since we are in
ested here only in the part of a proportional tow. The mo-
mentum integration is straightforward and yields

2g2wlW 2
1

~4p!3/2E0

`ds1ds2ds3

As1s2s3
S s1

s11s21s3
D 2

3S 1

4p~s11s21s3! D
(d22)/2

exp@2~s11s21s3!t#

3expF2
z2

4s2
2

z82

4s3
G H expF2

~z2z8!2

4s1
G

1expF2
~z1z8!2

4s1
G J . ~A2!

At this stage it is useful to apply the Laplace transformatio
The Laplace transformed of~a! reads

L~a!5E
0

`

dzE
0

`

dz8exp@2uz2vz8#a

52g2wlW 2
2

~4p!d/2E0

`

ds1ds2ds3

3exp@2~s11s21s3!t#
s1

2

~s11s21s3!21d/2

1O~u,v !, ~A3!

where we dropped higher-order terms inu andv since they
are convergent. The integrations in Eq.~A3! are simplified
by the change of variabless1→tx, s2→ty, and s3→t(1
2x2y):

L~a!52g2wlW 2
2

~4p!d/2E0

1

dxE
0

12x

dyE
0

`

dtx2t22d/2

3exp@2tt#. ~A4!

The result
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L~a!52g2wlW 2
1

~4p!d/2

1

6
td/223GS 32

d

2D ~A5!

can be expanded for smalle562d as

L~a!52g2wlW 2t2e/2
Ge

3e
. ~A6!

Upon transforming back to real space we obtain

2g2wlW 2
Ge

3e
t2e/2d1~z8!d1~z9!, ~A7!

with d1(z) denoting the distribution defined by

E
0

`

d1~z!g~z!5g~0!. ~A8!

Alternatively, a can be computed with help of the para
eter sum

S~n,m,k!5 lim
D→0

(
lW ( l )

lW ( l )2
1

klW 1lW ( l )
n

klW
m

~klW 1lW ( l )1klW !k
.

~A9!

The evaluation of this sum yielding

S~n,m,k!5lW 2
1

k0W
n1m1k2

2k
n~n12!1~n11!k1 1

4 k~k21!

~n1m1k!~n1m1k12!

1O„~lW 2!2
… ~A10!

is outlined in Appendix C. In this approach we do not p
rametrize the Neumann propagator. Instead, we subst
Eq. ~3.9! directly into Eq. ~3.13!. Laplace transformation
then gives

L~a!52g2w(
lW ( l )

E
p
lW ( l )2

1

2klW 1lW ( l )klW
2

3F 1

2klW 1u1v
S 1

klW 1lW ( l )1klW 1u
1

1

klW 1lW ( l )1klW 1v
D

1
1

klW 1lW ( l )1klW 1u

1

klW 1lW ( l )1klW 1v
G . ~A11!

Taylor expansion of the right-hand side of Eq.~A11! leads to

L~a!52g2w(
lW ( l )

E
p
lW ( l )2

1

2klW 1lW ( l )klW
2 F 1

klW ~klW 1lW ( l )1klW !

1
1

~klW 1lW ( l )1klW !2
1O~u,v !G . ~A12!

In terms of the parameter sum, Eq.~A12! reads
05612
-

-
te

L~a!52g2w
1

2Ep
@S~1,3,1!1S~1,2,2!1O~n1m1k.5!#.

~A13!

The terms withn1m1k.5 are convergent. We keep th
divergent contributions and obtain

L~a!52
1

16
g2wlW 2E

p

1

k0W
5 . ~A14!

The remaining momentum integration is straightforward.
real space one retrieves the result stated in Eq.~A7!.

The second diagram of the right-hand side of Fig. 2~b!, is
easier to compute. We mention only the result

2g2wlW 2
2Ge

e
t2e/2d1~z8!d1~z9!. ~A15!

APPENDIX B: EVALUATION OF DIAGRAMS
FOR THE ORDINARY TRANSITION

We start with diagram~c! displayed in Fig. 3. It stands fo

2g2w(
lW ( l )

E
p
lW ( l )2@]xGp,lW ( l )

cond,D
~z8,x!#x50

3@]yGp,lW ( l )
cond,D

~y,z9!#y50Gp,lW 1lW ( l )
cond,D

~z8,z9!,

~B1!

where the conducting Dirichlet propagator reads

Gp,lW
cond,D

~z,z8!5
1

2klW
@exp~2klW uz2z8u!

2exp$2klW ~z1z8!%#. ~B2!

Upon insertion of Eq.~B2! into Eq. ~B1! one finds for the
Laplace transformed of Eq.~B1!,

L~c!52g2w(
lW ( l )

E
p
lW ( l )2

1

2klW 1lW ( l )

3F 1

2klW 1u1v
S 1

klW 1lW ( l )1klW 1u
1

1

klW 1lW ( l )1klW 1v
D

2
1

klW 1lW ( l )1klW 1u

1

klW 1lW ( l )1klW 1v
G . ~B3!

Next we carry out a Taylor expansion in terms of 1/klW and
1/(klW ( l )1lW 1klW ). We keep only those terms proportional
uv, since these are giving the leading behavior in the lim
c→`. They are in real space proportional tod18 (z8)d18 (z9),
where the distributiond18 (z) is defined by

E
0

`

d18 ~z!g~z!5g8~0!. ~B4!
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We obtain in terms of the parameter sumS(n,m,k):

L~c!52g2wuvE
p
@ 1

4 S~1,3,1!1 1
4 S~1,2,2!2 1

2 S~1,0,4!

1O~n1m1k.5!#. ~B5!

Transforming back to real space yields

2g2wlW 2
Ge

10e
t2e/2d18 ~z8!d18 ~z9!. ~B6!

For the second diagram on the right-hand side of Fig. 3
obtain by similar means

2g2wlW 2
5Ge

6e
t2e/2d18 ~z8!d18 ~z9!. ~B7!

APPENDIX C: EVALUATION OF THE PARAMETER SUM

Here we outline the evaluation of the parameter sum
troduced in Appendix A. We apply the inverse Mellin tran
formation @25#

1

~klW 1lW ( l )1klW !k
5E

a2 i`

a2 i` ds

2p i

G~s!G~k2s!

G~k!
klW

s2k
klW 1lW ( l )

2s ,

~C1!

for 0,a,k, to the right-hand side of Eq.~A9!. Using
Schwinger parametrization we obtain

S~n,m,k!5 lim
D→0

E
a2 i`

a2 i` ds

2p i

3
G~s!G~k2s!

GS n1s

2 DGS m1k2s

2 DG~k!

3E
0

`

ds1E
0

`

ds2s1
(n1s)/221s2

(m1k2s)/221

3exp@2~s11s2!~t1p!#S 2
1

w

]

]s2
D

3(
lW ( l )

exp@2s1w~lW 1lW ( l )!22s2wlW ( l )2#.

~C2!
lin

. B

05612
e

-

Upon completion of the square the sum is easily carried
in the limit D→0. Moreover, we expand for smalllW 2. We
obtain

S~n,m,k!5lW 2E
a2 i`

a2 i` ds

2p i

3
G~s!G~k2s!

GS n1s

2 DGS m1k2s

2 DG~k!

3E
0

`

ds1E
0

`

ds2s1
(n1s)/221s2

(m1k2s)/221

3
s1

2

~s11s2!2
exp@2~s11s2!~t1p!#, ~C3!

up to terms of higher order inlW 2. A change of variabless1
→tx, s2→t(12x) renders the integration over th
Schwinger parameters straightforward. One gets

S~n,m,k!5lW 2
1

k0W
(n1m1 l )E

a2 i`

a2 i` ds

2p i

3
G~s!G~k2s!

G~k!

~n1s!~n1s12!

~n1m1k!~n1m1k12!
.

~C4!

The remaining integration can be done by exploiting t
identity

E
a2 i`

a2 i` ds

2p i

G~s!G~k2s!

G~k!
sn

5S 2t
]

]t D
nE

a2 i`

a2 i` ds

2p i

G~s!G~k2s!

G~k!
t2sU

t51

.

~C5!

Finally, one arrives at the result stated in Eq.~A10!.
s.
@1# For a review of percolation, see, e.g., A. Bunde and S. Hav
Fractals and Disordered Systems~Springer, Berlin, 1991!; D.
Stauffer and A. Aharony,Introduction to Percolation Theory
~Taylor & Francis, London, 1992!.

@2# A. B. Harris and R. Fisch, Phys. Rev. Lett.38, 796 ~1977!.
@3# C. Dasgupta, A. B. Harris, and T. C. Lubensky, Phys. Rev

17, 1375~1978!.
@4# M. J. Stephen, Phys. Rev. B17, 4444~1978!.
, @5# A. B. Harris and T. C. Lubensky, Phys. Rev. B35, 6964
~1987!.

@6# O. Stenull, H. K. Janssen, and K. Oerding, Phys. Rev. E59,
4919~1999!. Based on another approachf was also calculated
to second order ine by T. C. Lubensky and J. Wang, Phy
Rev. B33, 4998~1985!.

@7# T. C. Lubensky and A.-M. S. Tremblay, Phys. Rev. B34, 3408
~1986!.
8-13



a

v.

-

e,

G.

OLAF STENULL, HANS-KARL JANSSEN, AND KLAUS OERDING PHYSICAL REVIEW E63 056128
@8# A. B. Harris, Phys. Rev. B35, 5056~1987!.
@9# H. K. Janssen, O. Stenull, and K. Oerding, Phys. Rev. E59,

R6239~1999!.
@10# H. K. Janssen and O. Stenull, Phys. Rev. E61, 4821~2000!.
@11# Y. Park, A. B. Harris, and T. C. Lubensky, Phys. Rev. B35,

5048 ~1987!.
@12# O. Stenull and H. K. Janssen, Europhys. Lett.51, 539 ~2000!.
@13# O. Stenull and H. K. Janssen, Phys. Rev. E63, 036103~2001!.
@14# H. W. Diehl, in Phase Transitions and Critical Phenomen,

edited by C. Domb and J. L. Lebowitz~Academic Press, Lon-
don, 1986!, Vol. 10, pp. 75–267.

@15# H. W. Diehl, Int. J. Mod. Phys. B11, 3503~1997!.
@16# H. K. Janssen, B. Schaub, and B. Schmittmann, Phys. Re

38, 6377~1988!.
@17# H. W. Diehl and P. M. Lam, Z. Phys. B: Condens. Matter74,

395 ~1989!.
@18# See, e.g., R. K. P. Zia and D. J. Wallace, J. Phys. A8, 1495

~1975!.
05612
A

@19# T. C. Lubensky and M. H. Rubin, Phys. Rev. B12, 3885
~1975!.

@20# See, e.g., I. S. Gradshteyn and I. M. Ryzhik,Table of Inte-
grals, Series, and Products, 4th ed. ~Academic Press, New
York, 1980!.

@21# See, e.g., D. J. Amit,Field Theory, the Renormalization
Group, and Critical Phenomena~World Scientific, Singapore,
1984!; J. Zinn-Justin,Quantum Field Theory and Critical Phe
nomena~Clarendon, Oxford, 1989!.

@22# O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKan
J. Phys. A13, L247 ~1980!; 14, 2391~1981!.

@23# H. W. Diehl and S. Dietrich, Phys. Lett.80A, 408 ~1980!; Z.
Phys. B: Condens. Matter42, 65 ~1981!; 43, 281~E! ~1981!.

@24# H. W. Diehl, S. Dietrich, and E. Eisenriegler, Phys. Rev. B27,
2937 ~1983!.

@25# See, e.g., A. Erdelyi, W. Magnus, F. Oberhettinger, and F.
Tricomi, Tables of Integral Transforms~McGraw-Hill, New
York, 1954!, Vol. 1.
8-14


