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Effects of surfaces on resistor percolation
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We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particu-
larly we are interested in the average resistance between two connected ports located on the surface. Based on
general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite
random resistor networks. We show that the surface contributes to the average resistance only in terms of
corrections to scaling. These corrections are governed by surface resistance exponents. We carry out
renormalization-group improved perturbation calculations for the special and the ordinary transition. We cal-
culate the surface resistance exponefgsand ¢5 for the special and the ordinary transition, respectively, to
one-loop order.
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[. INTRODUCTION tire family of multifractal exponents for the moments of the
current distribution in RRN11-13, etc.

Percolation[1] is perhaps the simplest model for the ir-  Though a field theory of boundary critical phenomena has
regular geometry that occurs in disordered media. Percolddeen establisheffor background on the field theoretic ap-
tion is intuitively appealing and it has a large variety of proach to boundary critical behavior, see R¢fst,15) and
applications. Moreover, percolation is the prototype of a geosuccessfully applied to geometric percolatifh6,17] the
metric phase transition. The continuing interest in percolafield theoretic approach to RRN has not yet been extended to
tion results in an abundance of publications year after yeainclude surfaces. In this paper we present such an extension
In particular, the purely geometric aspects of percolatiorbased on the approach of Stephen and Harris and Lubensky.
have been studied extensively. From the current perspectivéye consider, at least from the standpoint of field theory, the
nonequilibrium properties of percolation, like transport onsimplest geometry that comprises a surface, viz., a semi-
percolation clusters, are of growing interest. Of course theswfinite geometry. The central question addressed by this pa-
issues are typically more challenging than the equilibriumper is as follows: What is the critical behavior Bfg(x,X")
properties. when the port andx’ are located on the surface and how

Random resistor networK®RRN) play a major role in the does the surface contribute to it?
study of transport on percolation clusters. A RRN is simply a The plan of presentation is the following: the paper has
bond percolation model in which the occupied bonds ardwo main sections, Secs. Il and lll. In Sec. Il we provide
assigned a finite, nonzero conductivity. Commonly studied irsome background on the phenomenology of resistor percola-
the theory of RRN is the average resistamdg(x,x’) be-  tion. Then we develop a field theoretic model that has its
tween two connected porksandx’ when an external current manifestation in a Landau-Ginzburg-Wilson type Hamil-
is inserted ak and withdrawn ak’. It was found[2,3] that  tonian. We show that the term in this Hamiltonian steaming

MRg(X,x") scales at the percolation point as from the conductance of the surface bonds is irrelevant in the
sense of the renormalization group. In Sec. Il we present the
Mg(X,X")~|x—x"|#", (1.2 core of our renormalization group analysis. We calculate cor-

rection to scaling exponents for the average resistance that
with ¢ being referred to as resistance exponent and where are associated with the irrelevant surface term. These are
is the correlation length exponent of the percolation univerthen compared to the Wegner exponent for percolation. Sec-
sality class. tion 1V contains our conclusions. Details of the calculations
The renormalization group provides a powerful andare relegated to three appendixes.
elaborate framework to investigate RRN analytically. In par-
ticular, a field theoretic approach based on the seminal work
of Stephen4] and Harris and Lubenskib] has prooved to Il. MODEL
be fruitful. Using this approach the resistance exponent has
been calculatefl6] to second order ikr=6—d, whered is
the spatial dimension. Moreover, the approach has been used Consider bond percolation on a semi-infinite latticedin
to computeg for continuum percolating networkg], ¢ for  dimensions bounded by al ¢ 1)-dimensional plane. A lat-
diluted networks of nonlinear resistdi®&—10], several fractal tice sitei is either located off the surface, i.a.e B={x
dimensions characterizing percolation clusf&s10, anen-  =(x|,2)|xe Z971,ze N/{0}}, or on the surface, i.eieS
={x=(x,0)[x €79 1. Each bond between nearest-
neighbors on the surface is occupied by a resistor of conduc-
*Present address: SAP AG, NeurottstraRe 16, 69189 Walldortanceo s with probability ps or unoccupied with probability
Germany. 1—-ps. The bonds between all other nearest-neighbor pairs

A. Semi-infinite random resistor networks
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—-C HereR(x,x") is the total resistance of the backbone, the sum

surface ] is taken over all nearest-neighbor pairs on the cluster and
extraordinary {V} denotes the corresponding set of voltages. As a conse-
quence of the variation principle

0 pspecial PREL
W 5p({V})—Ej Vi |=0, (2.4
ordinary
one obtains Kirchhoff's law
0 -1
FIG. 1. Schematic phase diagram for semi-infinite percolation. % o1 (Vi=Vj)= _% lij=1i, (2.9

The horizontal axis corresponds tor~p—p.. The vertical axis

corresponds to ¢, whose negative is a measure of the surface eVherel: =| (8 x— &, ) and the summations extend over the
hancement. The lines labeleddinary, extraordinary andsurface neares'E neigflféorsl Yc)i;f

indicate continuous phase transitions that have been given these Alternatively to Eq.(2.3) the power can by rewritten in
names by Lubensky and Rubjf9]. The lines meet at a tricritical terms of the currents as

point that represents thepecialtransition.

are occupied by resistors of conductanceith probabilityp P=R(x,x")I 2202» pi il =PI}, (2.6)
or empty with probability - p. !

Different phases can be distinguished depending on thg;ith {|} denoting the set of currents flowing through the in-
values ofp and ps [17]. A sketch of the phase diagram is gjyiqual bonds andp; j=0;,'. Obviously the cluster may
given in Fig. 1. The parameter~p.—p indicates ifp €x-  contain closed loops as subnetworks. Suppose there are cur-
ceeds its critical valug. - ps may be enhanced with respect onis 110} circulating independently around a complete set
to p. The parameter~ps,c(P=Pc) — Ps SErVes as a measure ot independent closed loops. Then the power is not only a
of the enhancement. L&y {x) denote the percolation fnction of| but also of the set of loop currents. The poten-

probability that sitex belongs to an infinite cluster. Assume g drop around closed loops is zero. This gives rise to the
¢>0. Crossing over fromr>0 to 7<0 leads to the forma- ,4iation principle

tion of an infinite cluster. HoweverP o (X € 8)<Pped X

e BB) by virtue of the missing neighbors at the surface. The P
phase transition that takes placeat0 is calledordinary TP({I(')},I)=O. (2.7
transition. Now suppose that is subcritical and that the al

system crosses over fropy<pgs t0 ps>ps, at fixedp. At
this so-calledsurfacetransition an infinite cluster forms in
the vicinity of the surface buP.{(X),2)) falls off expo-
nentially forz—oc. Upon increasing at fixedpg, the sur-
facetransition is followed by thextraordinarytransition at
which the exponential decay ceases to exist. The pant (
=0,7=0) defines a tricritical point describing the so-called
specialtransition.

Equation(2.7) may be used to eliminate the loop currents
and thus provides us with a method to determine the total
resistance of the backbone via Eg.6).

Since the resistance of the backbone depends on the con-
figurations C of the randomly occupied bonds, one intro-
duces an averagde - - )¢ over these configurations. It is im-
portant to recognize that the resistance between disconnected
Suppose a curretitis injected into a cluster at siteand sites is infinite. Therefore one considers only those sites

withdrawn at sitex’. The current carrying bonds constitute, 214X’ known to be on the same cluster. Practically this is
apart from Wheatstone bridge-type configurations, the backgione by introducing the indicator functiop(x,x") which,

bone betweerx andx’. The power dissipated on the back- for a given configuratioit, is unity if xandx’ are connected
bone is by definition and zero otherwise. Then timh moment of the resistanée

with respect to the averade- - ) subject tox andx’ being

P=1(V,—Vy), (2.1 on the same cluster is given by
whereV, is the potential at site. Using Ohm'’s law, ME = (x(xX)RXX ) (XX ). (2.8
B. Generating function
Our aim is to determine the average resistadg
wherel; ; is the current flowing through the bond frgno i, = qul). Hence our task is twofold: we need to solve the set
it may be expressed entirely in terms of voltages as of Kirchhoff's equations(2.5) and to perform the average

over all configurations of the diluted lattice. It can be accom-
_ N1y 2_ v _v2_ plished by employing the replica technigu. The voltages
P=ROGXD V=V <.EJ> oij(VimVi)"=PEVD). are replicated-fold: V,—V,=(V{?, ... V{?). One intro-

(2.3 duces
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() =exp(iN-V,), (2.9 , , " -
” (XXX )M (x,x )ZmG(X,X Mlx=¢-
wherex - V,=3 A (@V{ andX\ 0. The corresponding cor- (2.15
relation functions

C. Field theoretic Hamiltonian

G(X,X";N) = (b (X) h_5 (X' 2.1 o _
XTN) =R (XD )rep (219 Since infinite voltage drops between different clusters

may occur, it is not guaranteed thatstays finite, i.e., the

are defined as R i ) SRR
limit lim DHOZD is not well defined. Moreoven, =0 has to

° . be excluded properly. Both problems can be handled by re-
dv; sorting to a lattice regularization of the integrals in Egs.
(2.1) and (2.12. One switches to voltage variable
=A6k taking discrete values on@-dimensional torus, i.e.,
k is chosen to be aB-dimensional integer with- M < k(®
<M and k@=k(®mod(2M). A6= 6, /M is the gap be-
2.11) tween successive voltages afig is the voltage cutoff. In
' this discrete picture there are NBP—1 independent state
variables per lattice site and one can introduce the Potts spins
[18]

a=1

G(x,x":N)=lim <ZDJ H

D—0

><exp( — %P({\?}H%‘) EI V2

+ix.<\7x—\7x,))>

C

Here PV} =3 ; .01 ;(V{¥=V{?)2 and Z is the normal-
ization .
Dy(x)=(2M) P X expliX- 0) ¢y (x)=85,5,~ (2M) P
1 i AN#0
Z=f II dv; GX{—EP({V}H? > v?}. (2.12 (2.16
1 I
subject to the conditio ;P ;(x) =0.
Note that we have introduced an additional power term Now we revisit Eq.(2.11). Carrying out the average over
(i w/2)EiVi2. This is necessary to give the integrals in Eqs_the diluted lattice configurations provides us with the weight
(2.11) and(2.12 a well-defined meaning. Without this term €XP(—Hrep) Of the average . . .)rep:
the integrands depend only on voltage differences and the 1 ‘o
integrals are dlvergenF. Ph_yS|caIIy the new term c_orrespo_nds H op= — In< ex;{ TP+ — E §|2> >
to grounding each lattice site by a capacitor of unit capacity. P 2 2 9 c
The original situation may be restored by taking the limit of
vanishing frequencyp—0.

The integrations in Eq2.11) can be carried out by em-
ploying the saddle point method. Since the integrations are
Gaussian the saddle point method is exact in this case. The (2.17
saddle point equation is identical to the variation principle
stated in Eq.2.4). Thus the maximum of the integrand is
determined by the solution of Kirchhoff's equatiof®.5)

=—2 In(exp(—3015(6;— 6,)))c+ I?w > 62
1] i

By dropping a constant teridzIn(1—p)+NgIn(1—ps) with
N being the number of bonds between sites on the surface
of the undiluted lattice andNz being the corresponding

and quantity related to remaining bonds we obtain
. N2
Gx.x';N)={exg —Rxx)|) . (213 Hep=— > Kg(6—6)
c ieB,jeBUS
up to an unimportant multiplicative constant that goes to one _ 2 K g( 5i_ )+ 2 h(éi)
in the limit D— 0. Taylor expansion of the right-hand side of ieSjes . i

Eq. (2.13 about\(¥=0 leads to
i == 2 2 K000 P4())

. )\2 ieB,jeBUS g g
G(x,x’;x>=<x<x,x'>>c[1—7M<R1><x,x'>+--~ o
— 2 2 K{-6)Di(i)Ps())

1 ):2 k ieSjeS g¢
+iT —7) MO )+--- 1. (2,19 )
' +2, 2 h(O)® (i), (2.18
| 0

Hence the correlation functio@ can be exploited as a gen-
erating function for the momentd (" given by where
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- p L 2 2 responding field theoretic Hamiltoni&t in the spirit of Lan-
Kp(0)=In 1+ D exp(—zo6-0) (219 dau as a mesoscopic free energy from local monomials of the
order parameter field and its gradients in real and replica
and space. The gradient expansion is justified since the interac-
tion is short ranged in both spaces. Purely local terms in
s Ps 17z replica space have to respect the 5o Potts symmetry.
Ks(0)=In 1+1_psexp( 200" 0)}' (2.20 After these remarks we write down the Landau-Ginzburg-
Wilson-type Hamiltonian
The summations in Eq(2.18 run over nearest-neighbor
pairs subject to the specified conditions. Note tat6) and H=Hpt+Hs, (2.253

Ks(é) are exponentially decreasing functions in replica
space with a decay rate proportional do ! and agl, re-
spectively. The HamiltoniarH ., describes interaction of J 1 R . g - 4
Potts spins in a semi-infinite system with an external one-site/{5= Jvd e {§<P(X, OKp(A,85) (X, 0)+ = (X, 0) ]
potentialh(§). The interaction is rotationally and translation- ’ (2.25h
ally invariant in replica space. For largeand o 5 the inter-

action is short ranged not only in real but also in replicaand the surface part

space. Moreover, the interaction potentg( 5) is an ana-

with the bulk contribution

- 1 - -
lytical function of #%. Thus the Fourier transform Hszf ddfleE {EcpS(X| O Ks(Ag) es(X ,0)],
N 0
- E . (2.2509
Kg(\)=~— exp(—iN-0
s(M) (2M)P 5 M ) where
xin| 1+ ——exg~106-4]| (221 Ke(A,45)=7=A-wA; (2.259
and
can be Taylor expanded as
Ks(Aj)=c—wgsAj. (2.25¢
Kg(N) =7+ 21 Wp(N2)P, (2.22  The integration in Eq(2.25H extends over the half-space
=

V={x=(xH,z)|x“eRd‘1,z>0} whereas the integration in
Eq. (2.250 extends over the corresponding boundaky.
Terms of higher order in the fields have been neglected in
Eqg. (2.25H and Eq.(2.259 since they turn out to be irrel-

with 7 andw,~o"P being expansion coefficients. Analo-
gously one obtains for the Fourier transformkog:

o < _ evant in the renormalization group sense. Moreover, a term
Ks(N)=c+ pz,l wsvp()\z)p, (2.23 of the form (psﬁn(pzﬁmzﬂogpsé’z(p has been neglected in
Eg. (2.250 though it is marginal on dimensional grounds.
with coefficientsc andw, ,~ o5P. Such a term turns out to be redundant, cf. R&4]. 7, c, w,
In the limit of perfeét transportg—c and og— o, and wg are now coarse-grained analogues of the original

> ~ . . 2N . coefficients. Note that, upon settimg=ws=0, H reduces to
Kis(9) andKs(¢) go to their local limitsK 5(¢) =K 555, and the usual semi-infinite Potts model Hamiltonian as studied

K( §)=K555,6, with Kz and K5 being positive constants. by Diehl and Lam{17].
The interaction part of the Hamiltonian reduces to

- ) ] D. Irrelevance of wg
Higm —Kp 2 2 @) @4())

ieBjeBUS Here we discuss the relevancewf in the renormaliza-

tion group sense. LeP denote the set of parameters

—Kg 2 2 D3(i)Ds(]). (2.24 {r,w,clwg} ﬁandb some -SC?|Ing factor for the voIEage vari-
ieBjeB g able: 6—b#. By substitution of ¢(x,0)=¢'(x,b0) and

This represents nothing more than the semi-infinité1j2 ¢5(%,0)= ¢s(x,bf) into the Hamiltonian we get

states Potts model that is invariant against aM(2! per- "(x.bb) o bé
. . —_ . 1 1 L 1 P
mutations of the Potts spimB;. If ¢~ 1#0 andog*+0, this Hle'(x.bb).¢5(x,06).P]
Sizmyp Symmetry is lost in favor of the short-range interac- 1 R S
tione, - | a5 S xbiKaA. 8¢ (xb)
We proceed with the usual coarse graining step and re- 0
place the Potts spird ;(x) by order parameter fields(x, 5’) 4_g (x.08)3
that inherit the constrairﬁgcp(x,é)zo. We model the cor- 6 ¥\
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+f dd- 1x||2 (pS(X” bO)Ks(Aj) Mg((X,x"); 7,W,C,Ws)= Wf((X x"); T, c , (2.32

, - wheref is a scaling function. Dimensional analysis of the
X @s(X ,bé’)]- (2.26 N g o a1 y
Hamiltonian shows thatvA <~ w* andwgh“~ u*, where i
. R is the usual inverse length scale. Thwg/w~u 1, i.e., wg
Renaming the scaled voltage variablés=b6, leads to is an irrelevant coupling.
HLe"(x,07), ¢5(x,6"),P] lll. RENORMALIZATION-GROUP ANALYSIS

J ddxz [ o' (%, YK g(A,b2AG) e’ (X, 6 The three types of t_ransition occur_ring at bulk criticality_
7=0, namely, the ordinary, the special, and the extraordi-

nary transition, are described by renormalization-gr(Rig)
" QQD,(X'é,)s} fixed points wherec takes the valueeg, =, c5,=0, and
Ca=—, respectively(cf. Sec. Il C 3 of Ref[14] and ref-
erences therejnin the remainder of this paper we focus on
XH 0' YK s(b%A ;) the special and the ordinary transition. This section provides
an outline of our renormalization-group improved perturba-
tion calculation.

+J dd- 1XHE

XQD:S(X”,él)} . (2.27
A. Gaussian propagator

Clearly a scaling of the voltage variable results in a scaling Now we determine the Gaussian propagator for our
of the voltage cutoff:y,—b6y . However, by taking the model. For this purpose the irrelevant term has to be dis-
limit D—0 beforefy —o the dependence of the theory on carded from the Hamiltonian. Then the saddle point solution

the cutoff drops out. We can identiy’ and é and thus of

whereP’ ={7,b?w,c,b?wg}. Equation(2.28 implies for the  where D¢ indicates an integration over the set of variables

connected correlation functions {o(x,6)} for all x and 6, is determined by the so-called

0 equations of motion
G m({X.X| ,0};T,W,C,WS) q

o Ap—wA jo+ 2 $?=0 3.2
= lim H o x.,e)H s, 0)) T Ae-Whjetzet= (3.29
D—0 H
(229) and
that st Ines=0. (3.2b
Grm({XX, 6}; 7,w,¢, W) In Eq. (3.2D dnes(x|,6) denotes the normal derivative

lim,  +dz0(X, 6). As a consequence of E(.2), the Fourier
transform G, 5(z,z') of the Gaussian propagatdB(x|

Note thatx in Gy y refers to a point located off the surface, —XH’,z,z’,é— 6’) has to satisfy

i.e., X=(x,2) with z>0. In other quantities, howevek

may refer to an arbitrary point. The two-point correlation [7+ p2+wK2—a§]Gp'g(z,z’):5(2—2’) (3.33
functionsGy y with N+M=2 are nothing more than rep-

lica space Fourier transforms ¢y (x)#-x(X))s,. We de-  with the boundary conditions
duce from Eq(2.14) that

:GN,M({XyXH;bé};TabZW,C,bZWS)- (2.30

NZMg((x,X") ) €Gpx(2,0)=02Gpx(2,2')|z1=0 (3.30
r((X,X"); 7,W,C,Wg

- and
=(b~IN)2Mg((x,x"); 7,b?w,c,b?wy).

(2.3) Gp,6(2,2')=0. (3.30

The freedom to choosk has not been exploited yet. With Equations(3.3) can by solved as described in REf4], and
the choiceb?=w? the previous scaling relation turns into one obtains
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1
Gpi(z,2')=—|exp — «ki|z—Z'|)
2Ky

Ky—C
+ exp{— kx(z+2')}|(1—65.6),
Ky+C
(3.9
where
Ky = (7+p?+wWr?)L2 (3.5

As in our previous work on RRI{6,9,10,12,13 this princi-

PHYSICAL REVIEW B3 056128

Z

e

¢ @ ®

FIG. 2. Ultraviolet divergent Feynman diagrams contributing to
the renormalization o at the special transition. The bold lines
represent principal propagatdgs, 5(z,z'). The light lines stand for
conducting propagato@”fd(z,z’), and the dashed lines represent
insulating propagato@g‘g(z,z’). Insertions of the surface operator

Og are symbolized by the hatched “surface.”

pal propagator may be viewed as being composed of a codt is convenient to parametrize the conducting Neumann

ducting and an insulating part:

Gp,g(z,z’)zG;f’fd(z,z’)—Gg‘s(z,z’), (3.6
where
cond "N 1 N ’
G,x (2.2')=—|exp(—«ky|z—2 b
’ 2Ky
Ky—C
+ exp{—ky(z+2')} (3.7
Ky+C
and
Gir‘ls(z Zr)_i eXF(_ R —
p (&s )= KO|Z z |)
2k5
Kog—C
+ exp{—kg(z+2')}|ovs. (3.8
Kot C

B. Special transition

Here we sketch our renormalization-group improved per-
turbation calculation for the special transition. The ordinary

transition is relegated to the next subsection.

The constituting elements of our diagrammatic expansion

are the vertex—g and the propagatoG, 5(z,z'). The de-
composition of the principal propagator irﬁ)gofd(z,z’) and

Gip”S(z,z’) allows for a schematic decomposition of the prin-

propagator in terms of modified Bessel functions of the sec-
ond kind[20]:

G;?)?dN(Z,Z’)_

1 = ds S
_(477)1’2f0 ST/Zexp[—s(Ter +WA9)]
(z+2')?
s |

;{ (z=2')?
x{exg — ———|+ex
(3.10

4s

In this parametrization the parametarsorrespond to resis-
tances and the replica variabliaé to currents. The replica
currents are conserved in each vertex and we may \ﬁ{ite

—_—

=Ni(5 VDY), where X is an external current angh ()}
denotes the set of independent loop currents.

As we have learned in Sec. Il D, the surface coupling
constantwg is irrelevant. By setting it to zero, however, we
would lose all information about its impact on the average
resistance. To investigate this impact we work with inser-
tions[21]. Here at the special transition we analyze correla-
tion functions

Gn,m({X,x| ,é};T,W,C)OS

N M

=1lim { Os[1 e(x, 6011 @s(X)j,;)
D—0 i=1 =1

conn

H

(3.11

cipal Feynman diagrams into sums of conducting diagramsvhere the operator

consisting of conducting and insulating propagatésse

Figs. 2 and 3 These conducting diagrams may be inter- y ¢
preted as being resistor networks themselves with conducting

propagators corresponding to conductors and insulating —
propagators corresponding to open bonds.

At the special transitiomg?gd(z,z’) simplifies to the con- > o °
ducting Neumann propagator

FIG. 3. Ultraviolet divergent Feynman diagrams contributing to
the renormalization o®3 at the ordinary transition. The meaning
of the symbols is the same as in Fig. 2, except that the hatched
“surface” stands now, in conjunction with the bars, for an insertion
of the operatoi0% .

1
GPMN(z,2) = ?[exp(— ky|z—2'])

A
p Ky

+exp[— xy(z+2')}]. (3.9
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W - ° 712512 °_ 7151
0= Ef S (Vios(x), )12 (3.12 05— 0s=ZY70ps, c—c=2Z7271Z.c, 5176
= .

is inserted. Note by comparing Eq2.25 and(3.12) thatOg 05— ("QS: Zo.Os, (3.179
is associated with a coupling constant=wg/w. s
To see how the insertion procedure works in detail wewhereG,=(47) ¥2['(1+ €/2) with ' denoting the Gamma
now consider diagrarta) (see Fig. 2 Diagram(a) stands for  function. The overcircles indicate unrenormalized quantities.
Z,Z., andZ, have been calculated to three-loop order by de
_QZWZ X(')ZGEOES)N(Z’,O)G;"S(‘f)”(O,Z”) Alcantara Bonfimet al. [22] Diehl and Lam[17] computed
NORU™ : : Z, andZ. to one-loop order. Moreover, we gave a two-loop
result forZ,, in [6]. Hence, it remains to determiﬂQ;S. Our

condN roon
XGpxexn(Z27), (313 calculation that is sketched in Appendix A yields
where [, is an abbreviation for (2) "1 fd? *p. The in- u ,
volved summation over the loop current reads Zog=1+ g +O(U). (3.18
_ N2 PN AO)T. 3 The unrenormalized theory has to be in(jepc_endent of the
W{% exXH W )] (3.19 length scalew ™! introduced by the renormalization. In par-

.. . .. ticular the unrenormalized correlation functions with toﬁg
We interpret P(X\,\V) = — (s,+s3)A(V2=s;(A+1")2 as insertion have to be independent of i.e.,
the power of the diagram. To evaluate the summation we
employ the saddle point method. Note that the saddle point d o o
equation is nothing more than the variation principle stated “@GN,M({X'XH W
in Eq. (2.7). Thus, solving the saddle point equations is
equivalent to determining the total resistariR€{s;}) of a  Expressed in terms of renormalized quantities, E319
diagram, and the saddle point evaluation of E314) yields leads to the Gell-Mann-Low renormalization-group equation

X2:0,7,6,u)0,=0.  (3.19

N+M

_ _ \ 2 =
Eq (314): Wexq R(Sl,Sz,SQ,)W)\ ] DM+ 5 'y+?'}’1+ ,},OS GN’M({X,X” 1W)\2};U!TIC!M)OS

s, .7

NI S
S1+S,+ 53

=0, (3.203

% exr[—(sl+sz+33)w)f(')2]. (3.15 where we use the abbreviation

Jd Jd Jd J
Here we have switched back to continuous currents. The Dy=p——+B—+Tk—+W{——+Cr—.
remaining integration is Gaussian and therefore straightfor- A o7 ow dc 320
ward. In the limitD— 0 we obtain upon Taylor expansion of (3.209
exf —R(s;,S;,S3)WA2], In Eg. (3.20 we have introduced the usual Wilson functions
2
EQ. (3.15)= —w\?2 % +0((N%)?) (u)= 1z (3.21a
q. ’ Sl+SZ+S3 ' La M(?/.L 0 o ’
(3.19
R Jd
Note thatis;\/(s;+S,+S3) is the replica current flowing §(U)=M£ InwW=y—yy, (3.21h
through the surface contact. Thus, we have an effective 0
method to carry out the summations over the loop currents: 3
essentially we just need to determine the current flowing k(W=p—| InT=y—1y,, (3.210
through the surface contact of the diagram. |,
The ultraviolet divergent integrals occurring in the dia-
grammatic expansion can be regularized by the minimal sub-
traction method. We employ the following renormalization Ks(U):M@ Inc=y+y1—vc, (3.21d
scheme: 0
° o Ju
(p—)gp:leZ(P, T— TzzilZTT, (317a ﬁ(u):,bb@ :U(_6+3’y_ ‘yu), (3216
0
wow=2Z"1Z,w, g—g=2 ¥2zMG V12,2 where the bare quantities are kept fixed while taking the

(3.17H derivatives.
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The renormalization group equation can be solved in & expansion results may be inferred, e.g., frfd2,17. ¢
standard manner by the method of characteristics. The chat= (2 — r)— 1+ e/42+ 4€%/3087+ O( &%) is the bulk resis-

acteristics read

w — . —
IW:M with w(1l)=pu, (3.223
o _
Iﬁzﬁ[u(l)] with u(1)=u, (3.22h
J  — — _
Iﬁln =x[u(l)] with 7(1)=r7, (3.229
1 — — _
IEInW=§[u(I)] with w(1)=w, (3.220
J  — — _
[—Inc=«xdu(l)] with c(1)=c, (3.22¢

al

%lnf--:y---(m)) with Z---(1)=1. (3.22f

At the infrared-stable fixed point*, determined by3(u*)
=0, we find

Grm({X,X) W2} U, 7,€, 1) o

— | (N+M) p/2+Mny/2+ ygs

X Gn,m ({11 JEWNZ U1 T.|K§C,M)OS.
(3.23
K*=k(U*), K%

where y*=vy(Uu*), =y (u*),

=kg(u*), and yzgsz yOS(u*). In order to obtain the scaling
behavior of the correlation functions, a dimensional analysis

remains to be done. This dimensional analysis gives

G,m({XX) WA} U, 7,6, 1) 0
= u(NEM)E-2)2¢1

X G m({mX, ), ™ 2WN2hu* w2

T,IUflC,M)OS-
(3.29
Equation(3.23 in conjunction with Eq(3.24) now results in
G ({X,X) W2} U,7,€, 1) o

— | (N+M)(d—2+9)/2+ M py/2+ 1+ y’és

X G ({11 172w g% 17 | Mse, ) o
(3.25

wheren=y*, 1/v=2—«*, n,=v7, and lbs=1—«% are

tance exponeni6].

The scaling behavior of the correlation functions without
insertion can be derived by similar means. The correspond-
ing renormalization group equation is analogous to Eq.
(3.20. Basically, just they, is missing. Solving this renor-

malization group equation gives in conjunction with dimen-
sional analysis

G (X% ,WA2};u,7,C, 1)
— | (N+M)(d—2+)/2+Mn, /2
X Gy ({1%,1%) 1~ #MwN 2% 17 1~ Wsc, ).
(3.26
By comparing Egs(3.25 and (3.26) we learn that the scal-

ing dimensionxp . of O is

(3.27

XOS: 1 + ’ygs y

which tells us that the couplings scales in terms of the flow
parametet as

vs(l)=v g 1H70, (3.29
Taking into account that
w(l)=wl¢ 2 (3.29
we deduce that
ws(l)=wgl ~¢s’v., (3.30

Here we introduced the surface resistance expoggntor
the special transition. To one-loop order it is given by

1 1

— N 2
¢S_ V(l g 708) 2 846+O(6 )' (3'3])

Now we can extract the scaling behavior of the average
resistance between surface ports from the correlation func-
tions withN=0 andM =2. At the special transition, i.e., for
7=c=0, Egs.(3.295 and(3.26) reduce to

GoAlX—x

,wXZ)OS: |(d=2+ 7))~ (ds— B)/v

X Go Xy =X{[ .1~ #"WX?) o
(3.32

and, respectively,

Go A |x = X[ |, Wwh?) =125 MG 1| —x{[,I = #*wN?),
(3.33

where »;= 7+ 5. Note that we have dropped some of the

usual critical exponents for semi-infinite percolation, whosearguments for notational simplicity. Clearly, the two-point
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function with and the one without the insertion enter into thewhere
average resistance. Overall, we may write for the generating
function Gum({xx.6})
> - N M conn
G(|x—x[|,Wx2)=11=2F71Go (1]x—x[|,] - #/*Wx?) , R .
A A = lim Hl e(X; ,Hi)Hl Ines(Xj . 0))
j=

L]l b0\ = -

(3.39

(3.34 The subscripte on the right-hand side reminds us that the
' average is to be taken witt=o0. Apart from the additional
We exploit the freedom to choose |x;— x| L. Moreover, ~term forN=0, M=2 the 1£ expansion amounts in replac-

may be renormalized by the reparametrization

X Go A %= x{|! *"”VWXZ)OS}.

G = [, wWAZ) = xy=xf | €727 1+ g = x| #wh? Onps—[On@slbare= (Z52)0ngs. (340
Wg (b B} i 2 A one-loop result foiz] can be gleaned _frorﬁL?]._

oy IS =g [P We point out that Eq(3.38) is correct in the given form
for the bare, i.e., unrenormalized correlation functions. In the
renormalized theory nontrivial powers ofclwill appear in-

(3.39 stead of 1¢. One may infer from Eq(2.195, however, that
this peculiarity will not influence the average resistance.

Here we have set all nonuniversal constants equal to one. Here at the ordinary transition we insert the operator

Upon differentiating Eq(3.35 with respect ta\? we obtain

+..

~ . w -
at\?>=0 for the average resistance O‘O;:Ef ddfleZ [Vidnes(X| 012 (3.41)
4
N 1 lv Ws 11(ps—b)v . . I o
MR(X) X)) =Wy =X 771 14+ = x| LR K into the one-loop diagrams contributing & ,. The corre-
(3.36 sponding diagrams are depicted in Fig. 3. We use the renor-
malization
Note that bs— ¢)/v<<0, i.e., the corresponding term is in-
deed only a correction to scaling that vanishes [fr-x;| Ogﬁ((bg:zoiog_ (3.42
—®,
Our one-loop calculation gives for the renormalization factor
C. Ordinary transition
_ At the o_rt_jinary transition the o_r(_jer parameter field satis- Zos=1+ §E+O(u2). (3.43
fies the Dirichlet boundary conditio@s=0. This can be S 30 e

deduced from Eq(3.4), which shows that the Gaussian

propagator vanishes far— if one of the points is located Details of the calculation can be found in Appendix B.

on the surface. Since correlation functions with insertions of The renormalization group equation for the correlation
the surface field are zero, they are not appropriate to gaifunctionsGy y, with the O insertion is given by
information about fluctuation effects near the surface. A con-

venient method to investigate the scaling behavior of quanr ., N+M M " o

tities that vanish foc— is the 1£ expansior{23,24. For Wt YT it vos G (XX WAT U, 7)o
large c the propagator behaves as

=0, (3.44a
Gp.i(2,0)=c"13,,G" (2,2') |y —o+O(c™?), (3.37)
: P o -
whereD , is an abbreviation for
WhereGE’X(z,z’)=Iimcﬁwprg(z,z’) is the Dirichlet propa-

S . . J J J J
gator. Similarly, one can expand the entire correlation func- D;’j= Mo +,3£ +TK— +w§m. (3.44b
M

tions. This gives o7

p; - ) The Wilson functionsy; and vy, = are defined as
G,m({X%X), 1) =16y 00m 280 = X[) Rl Yo

+CTMGR M {xx, )+ - -

J
yi(W)=p—/ InZ7,
(3.38 dmlg
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9 Such a case occurs typically when there is a finite momen-
7(9;(“):#@ InZo=. (349  tum cutoff reminiscent of a nonvanishing lattice spacing.

0 In order to determine the leading correction we revisit the
characteristic Eq(3.22h. Upon expansion for small devia-

Solving Eq.(3.4 id in conjunction with a di - :
olving Eg.(3.44) provides us in conjunction with a dimen fions U— u* from U* we obtain

sional analysis with the scaling behavior

Grm (06X WX U, 7, 1) o |Z—L|’=w[i— u*1+O([u—u*?)with u(1)=u,

|(N+M)(d—2+7,)/2+M7;j°/2+3+«/;§ (3.52

where w=8'(u*). This differential equation is readily

[ —d)/y 27 . —1/v . .
X Gy, Ixp 7P WA T u* 1T T w) o solved with the result

(3.49

u(h=u*+[u—u*]le. (3.53
oo: o0 * * — . * .
where; = y;(u*) and Yo yos(u ). For the correlation w is referred to as the Wegner exponent. It can be calculated
functionsGy, ,, without insertion we obtain without much effort to third order ir upon using the three-
; loop result forB(u) obtained by de Alcantara Bonfiet al.
Grm({X X WA} u, 7, ) = | (NFMI =24 )iz Moy, 12 [22]. Here we are working only to first order into which

Y the Wegner exponent is given by
X GONO,M({|X,| X| A 7¢/VW)\2}; u*,l *1/1/7_’,“)'

(3.47

By comparing Eqs(3.46 and (3.47 we deduce that the
coupling constanbs=wg/(c?w) of O% scales as

w=e+0(e?). (3.59

To see the impact of the deviation fromi on the corre-
lation functions, we revisit the special transition. The analy-
sis can be adapted, however, in an obvious fashion to the
ordinary transition. From the renormalization group equation

v§(|)=v§l3+7<*9§. (3.489  and Eq.(3.53 we deduce that
Hence we obtain fows=wg/c? that Go A= x| ,W\?)
w1 =wl~ 45!, (3.49 =112 MG 1 |x)—x{[ .1~ *wK?)
with the surface resistance exponepf for the ordinary ><{1+[U—U*]""F('|XH_Xﬁ|:|_d’/VWK2)
transition reading +O([u—u* ), (3.55
i=v(—1—* — 7?9§) — _% _ %6+ 0O(é?). whereF is a scaling function. Once more we chodsele

—xH’|‘1 and carry out a Taylor expansion,

(3.50

’ ‘g ’ -
Now we can proceed in the same fashion as in Sec. IlI B.G°12(|X”_XH|'W)‘2): =2
We assemble the generating function for the average resis-
tance from the two-point correlation functiondN0,M
=2) with and without insertion. Upon taking the derivative X{1+[”_u*]|x\l_xli|w
with respect ton2 we finally arrive at

X1+ [x—x{["wK?. - -]

XL+ 3= %] [ WhZ 4]

W -
M (X X)) = W|x = X[ |#7] 14+ — | x = x{| (¢~ DI (3.56
RVA A (I w A

(3.51) where we have set, as always, all nonuniversal expansion
coefficients equal to one. By taking the derivative with re-

D. Leading correction spect tox? we obtain at\2=0

Now, as we have computed the corrections to scaling dUE_?M r(X| X)) :W|X‘|_X”r|¢/u{1+[u_ w1l x|+ ),
the resistors located on the surface it is legitimate to ask: (3.57)
How important are these corrections compared to other cor-
rections? In particular we should compare them to the lead- Now we can compare the different correctionsvtg con-
ing correction that is governed by the so-called Wegner exsidered in this paper. To first order éthe correction due to
ponent. This leading correction emerges when thehe deviation fromu* falls off algebraically for increasing
renormalized couplingl is not exactly equal* since the port separation with an exponentw= — €. The surface cor-
renormalization flow has not arrived at its fixed point yet. rection at the special transition vanishes much faster with an
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exponent (s— ¢)/v=—1+€/21. Among the three correc- APPENDIX A: EVALUATION OF DIAGRAMS
tions, the surface correction at the ordinary transition drops FOR THE SPECIAL TRANSITION

off fastest with (b5 — ¢)/v=—3+23¢/105. In this appendix we sketch the computatiorzef, for the

special transition. We start with diagraf@ and revisit Eq.
V. CONCLUSIONS (3.13. Upon inserting the result for the current summation,

) Eq. (3.16), we obtain
In order to study the effects of surfaces on resistor perco-

lation we have considered a semi-infinite RRN. We have

d a field theoretic Hamiltonian in which th l 2wne— ersldszdsg‘ 51
resented a field theoretic Hamiltonian in which the couplin —g~w
P Ping J (4m)%2)pJo \s;s,s; \S1tS2tS3

constant corresponding to the surface conductances turned

X

out to be irrelevant. We have calculated the corrections to
scaling due to this irrelevant coupling for the special and the )
ordinary transition to one-loop order. X exH —(syt s+ 83)(7+p7) Jexp — 4s, 4s,
In this paper we did not consider the surface and the ex-
traordinary transition. We left the surface transition aside, (z-2')? (z+2')?
because it is basically equivalent to the percolation transition eXp 4s, texp - 4s, ' (A1)
of a translationally invariantl —1 dimensional RRN. Thus,
the behavior oMy, at the surface transition can be inferred where we have dropped all other terms since we are inter-
from Ref.[6]. We did not drill into the extraordinary transi- ested here only in the part of a proportionalvio The mo-
tion because of severe technical complications. These afmdentum integration is straightforward and yields
rooted in the fact that the order parameter profile is not flat

on neither side of the line of the extraordinary transition. _ oPwi? 1 [=dsds,ds; S1 ?

N That the'surface—coupllngvs is |rre!evant seems intu- 9 (4m)¥2)o \/@ S;+S,+5S;

itively plausible. Suppose that the resistor network is at the

special transition where the surface and the bulk percolate 1 (d-2)2

simultaneously. Assume that we conduct a series of consecu- (m) exfl —(S1+ 5,1 83)7]
tive measurements in which we apply the external curtent

between two surface porig andxH’ with increasing distance 2 52 (z—2')?

Ix;—x{|. As we increasex|—x(|, more and more paths of Xexg ——— — (exp{—

connected bulk resistors will add in parallel to the connected 4s,  4sg 4s;

paths of surface resistors. Hence, the influence of the surface (z+27')2

bonds becomes negligible for laryg— x| |. This situation is + ex;{ T Tas, ] : (A2)

even more pronounced at the ordinary transition, where the
percolation probabilityP e is lower at the surface than in At this stage it is useful to apply the Laplace transformation.
the bulk. Thus, it is plausible that the surface correction torhe Laplace transformed ¢8) reads
Mg vanishes faster for increasirjg —x;| at the ordinary
transition than at the special transition. = <, ,

Both surface corrections turn out to be small comparedto ~ £(3= J; dzfo dz'exd —uz—vZz']a
the leading correction governed by the Wegner exponent for
percolation. This means that the surface has weak effects on R 2
the average resistance compared to those of a finite lattice =—g*w\? an
spacing. As long as one is interested only in the leading (4)
behavior and major corrections to it, one may neglect the
surface effects safely. X exf — (S;+S,+S3) 7]

To our knowledge there are no numerical simulations (sl+sz+s3)2+d’2
available to date that could be used to test our predictions for
the surface resistance exponents. The reason is probably that +0(u,v), (A3)
Callec bus-bar geometry, n that the. resiator network "1ere We dropped higher-order termstimndo since they
placed between supercon,ducting plates that short entire s gre convergent. The |r_1tegrat|ons in EA3) are simplified

. 4 : . ) .%y the change of variables;—tx, s,—ty, and s;—t(1

faces. We hope that this paper triggers simulations prowdmg_x_y),
numerical estimates faps and ¢ . '

J ds,ds,ds;
0

2
S1

N 2 1 1-x oo
L£(a)=—g?w\? f dxf dyf dtx?t?~ 9?2
0 0 0
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- 1 1
L£(a)=—g°W\>——— — rd’231“(

(4’7T)d/2 6 2

can be expanded for smal=6—d as

3—9) (A5)  L(a)

PHYSICAL REVIEW B3 056128

—g2w%J [3(1,3,)+3(1,2,2+0(n+m+k>5)].
p
(A13)

The terms withn+m+k>5 are convergent. We keep the

_ G divergent contributions and obtain
L(a)=—g?wW\?r 2=, (A6)
3e 1 1
L(a)=— ZWXZJ'—. Al4
Upon transforming back to real space we obtain @ 16g ng (A14)
-, G The remainin tum int tion is straightf d. |
22 € _—el2 , " g momentum integration is straightforward. In
g WA 3¢ 0+(2)0+(2), (A7) real space one retrieves the result stated in(Ed).
The second diagram of the right-hand side of Figp) 2is
with &, (z) denoting the distribution defined by easier to compute. We mention only the result
- 200y 2 ZGE —€l2
. 0+(2)9(2)=9(0). (A8) —QPWAE— 7 5.(2)8,(2). (A15)

Alternatively, a can be computed with help of the param-

eter sum

R 1
3 (n,m,k)= lim A2

D—0 (M

n m L. N k'
Ky, xiyKy (KX X0+ Ky)

APPENDIX B: EVALUATION OF DIAGRAMS
FOR THE ORDINARY TRANSITION

We start with diagranfc) displayed in Fig. 3. It stands for

(A9) —gw2 | X006 (2 010
NORRS '
The evaluation of this sum yielding d Y d -
X[,Goy (v,2)]y-oCrszi(2' 12,
1 n(n+2)+(n+1)k+ik(k—1) B1)
2(Mmb =32 (n+m+k)(n+m:k+2) (
Ko where the conducting Dirichlet propagator reads
+0((X?)?) (A10) 1
o _ | Gox P (2.2)= ——[ext— kil z=7'])
is outlined in Appendix C. In this approach we do not pa- P 2Ky
rametrize the Neumann propagator. Instead, we substitute i ,
Eq. (3.9 directly into Eq.(3.13. Laplace transformation —exp{— kx(z+2')1]. (B2)
then gives . . . .
¢ Upon insertion of Eq(B2) into Eq. (B1) one finds for the
1 Laplace transformed of E4B1),
L@=—giwa | N2 ;
) Jp Ky ix(VKS - 1
' Lo=-gw>, | NO?——
1 1 1 A D Jp 2K5 5
+
2kxtu+tv \ Kyt kytU Ky xt+ KytTU « 1 ( 1 N 1
1 1 2kytUT U\ Kiix)T Kyt U  Kyix+ Kyt U
+ (A11)
Kyix T ry+U kY xy+Kyt+o 1 1

Taylor expansion of the right-hand side of E411) leads to

- 1 1
L@=—g*w> fk"’z >
O Jp 2Kk5 XOKT [ KN (KR 4R+ k)
+—+O(u,v)l.
(K550 + K7)?

In terms of the parameter sum, Hé12) reads

(A12)

(B3)

KyixO T Ky +U ki x)+kx+o

Next we carry out a Taylor expansion in terms ok,l/and
U(kymxt ky). We keep only those terms proportional to
uv, since these are giving the leading behavior in the limit
c—o. They are in real space proportionaldg(z') &', ("),
where the distributions’, (z) is defined by

f:54<z>g<z>=g'<o>. (B4)
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We obtain in terms of the parameter siign,m,k):

ﬁ(c)=—g2wuvf [33(1,3,)+33(1,2,2—33(1,0,9
p

+0O(n+m+k>5)]. (B5)
Transforming back to real space yields
-, G,
—Q?W\Z =725 (2') 6. (2"). (B6)

10e

PHYSICAL REVIEVGE056128

Upon completion of the square the sum is easily carried out

in the limit D— 0. Moreover, we expand for small2. We
obtain

. (a-i=d
E(n,m,k)z)\zf il

a—iwe 27i

I'(o)T(k—0o)

n+o m+k—o ik

r

For the second diagram on the right-hand side of Fig. 3 we

obtain by similar means
> SGE - ’ AN ”
—gzw)\zgr 25' (2)68,(2"). (B7)

APPENDIX C: EVALUATION OF THE PARAMETER SUM

Xf d51f dszs(1n+o)/2—1s(2m+k—o)/2—1
0 0

st
X————exf —(s;+s)(7+p)],

(Cy
($1+52)

Here we outline the evaluation of the parameter sum in- ) - ]
troduced in Appendix A. We apply the inverse Mellin trans- UP t0 terms of higher order ik. A change of variables,

formation[25]

k .Zo.
Ky ixm

(CD

1 a-i=do T(o)T(k—0)
j I'(k)

o
- - - K
(kysxm+rp) Ja—ie 27 A

for 0<a<k, to the right-hand side of EqA9). Using
Schwinger parametrization we obtain

) a—i= do
S (n,mKk)= I|mf —

D—0J a—i» 2i

I'(o)I'(k—0)
n+o m+k—o
2 2

% Jmdsljmdszs(l"”)/z_ls(zm”_”)’z_1
0 0

r

)F(k)

19
Xexd —(s1ts)(7+ p)]( W a—sz>

x> ex —sw(x + A M)2—swa 2],
NO!

(C2

—tX, s,—t(1—x) renders the integration over the
Schwinger parameters straightforward. One gets

a—i® o

.1
E(n,m,k)=>\zwf

o a—iw 2i

I'(o)T(k—0o)
(k)

(n+o)(n+o+2)
(n+m+k)(n+m+k+2)°

(C4

The remaining integration can be done by exploiting the
identity

O_V

a—iedo I'(o)I'(k—0)
f I'(k)

a—iw 27T|

I\ [a—i=dg F(O’)F(k_o-) -0
[l e

a—iw 2i t=1

(CH

Finally, one arrives at the result stated in E410).
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